Skip to main content
Top
Published in: Wireless Networks 2/2022

29-01-2019

Cognitive ocean of things: a comprehensive review and future trends

Authors: Yujie Li, Shinya Takahashi, Seiichi Serikawa

Published in: Wireless Networks | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The scientific and technological revolution in Internet of Things is set off in oceanography. Humans have always observed the ocean outside the ocean to study the ocean. In recent years, it changes have been made into the interior of the ocean and the laboratories have been built on the sea floor. Approximately 71% of the Earth’s surface is covered by water. Ocean of things is expected to be important for disaster prevention, ocean resource exploration, and underwater environmental monitoring. Different from traditional wireless sensor networks, ocean of things has its own unique features, such as low reliability and narrow bandwidth. These features may be great challenges for ocean of things. Furthermore, the integration of artificial intelligence and ocean of things has become a topic of increasing interests for oceanology research fields. Cognitive ocean of things (COT) will become the mainstream of future ocean science and engineering development. In this paper, we provide the definition of COT, and the main contributions of this paper are (1) we review the ocean observing networks all the world; (2) we propose the COT architecture and describe the details of it; (3) important and useful applications are discussed; (4) we point out the future trends of COT researches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Arrott, M., Chave, A., & Farcas, C. (2011). Building transparent data access for ocean observatories: Coordination of US IOOS DMAC with NSFs OOI cyberinfrastructure. In OCEANS (pp. 1–9). Arrott, M., Chave, A., & Farcas, C. (2011). Building transparent data access for ocean observatories: Coordination of US IOOS DMAC with NSFs OOI cyberinfrastructure. In OCEANS (pp. 1–9).
3.
go back to reference Suyehiro, K., Mikada, H., & Asakwawa, K. (2003). Japanese seafloor observing systems: Present and future. Marine Technology Society Journal, 37(3), 102–114.CrossRef Suyehiro, K., Mikada, H., & Asakwawa, K. (2003). Japanese seafloor observing systems: Present and future. Marine Technology Society Journal, 37(3), 102–114.CrossRef
4.
go back to reference Person, R., Favali, P., & Ruhl, H. (2015). ESONET multidisciplinary scientific community to EMSO novel European research infrastructure for ocean observing. In R. Person (Ed.), Seafloor observatories: A new vision of the earth from the abyss (pp. 531–564). Berlin: Springer.CrossRef Person, R., Favali, P., & Ruhl, H. (2015). ESONET multidisciplinary scientific community to EMSO novel European research infrastructure for ocean observing. In R. Person (Ed.), Seafloor observatories: A new vision of the earth from the abyss (pp. 531–564). Berlin: Springer.CrossRef
5.
go back to reference Barnes, C., Best, M., & Johnson, F. (2013). Challenges, benefits, and opportunities in installing and operating cabled ocean observatories: Perspectives from NEPTUNE Canada. IEEE Journal of Oceanic Engineering, 38(1), 144–157.CrossRef Barnes, C., Best, M., & Johnson, F. (2013). Challenges, benefits, and opportunities in installing and operating cabled ocean observatories: Perspectives from NEPTUNE Canada. IEEE Journal of Oceanic Engineering, 38(1), 144–157.CrossRef
6.
go back to reference Moloney, J., Hillis, C., Mouy, X., Urazghildiiev, I., & Dakin, T. (2014). Autonomous multichannel acoustic recorders on the VENUS ocean observatory. In Proceedings of the of IEEE oceans (pp. 1–6). Moloney, J., Hillis, C., Mouy, X., Urazghildiiev, I., & Dakin, T. (2014). Autonomous multichannel acoustic recorders on the VENUS ocean observatory. In Proceedings of the of IEEE oceans (pp. 1–6).
7.
go back to reference Kaneda, Y. (2010). The advanced ocean floor real time monitoring system for mega thrust earthquakes and tsunamis-application of DONET and DONET2 data to seismological research and disaster mitigation. In Proceedings of IEEE oceans (pp. 1–6). Kaneda, Y. (2010). The advanced ocean floor real time monitoring system for mega thrust earthquakes and tsunamis-application of DONET and DONET2 data to seismological research and disaster mitigation. In Proceedings of IEEE oceans (pp. 1–6).
8.
go back to reference Shim, J., Lee, D., & Kim, S. (2009). Application of a large ocean observation buoy in the middle area of the Yellow Sea. Ocean and Polar Research, 31(4), 401–414.CrossRef Shim, J., Lee, D., & Kim, S. (2009). Application of a large ocean observation buoy in the middle area of the Yellow Sea. Ocean and Polar Research, 31(4), 401–414.CrossRef
10.
go back to reference Domingo, M. (2012). An overview of the internet of underwater things. Journal of Network and Computer Applications, 35, 1879–1890.CrossRef Domingo, M. (2012). An overview of the internet of underwater things. Journal of Network and Computer Applications, 35, 1879–1890.CrossRef
11.
go back to reference Demirors, E., Sklivanitis, G., Melodia, T., Batalama, S., & Pados, D. (2015). Software-defined underwater acoustic networks: Toward a high-rate real-time reconfigurable modem. IEEE Communications Magazine, 53(11), 64–71.CrossRef Demirors, E., Sklivanitis, G., Melodia, T., Batalama, S., & Pados, D. (2015). Software-defined underwater acoustic networks: Toward a high-rate real-time reconfigurable modem. IEEE Communications Magazine, 53(11), 64–71.CrossRef
12.
go back to reference Kaushal, H., & Kaddoum, G. (2016). Underwater optical wireless communication. IEEE Access, 4, 1518–1547.CrossRef Kaushal, H., & Kaddoum, G. (2016). Underwater optical wireless communication. IEEE Access, 4, 1518–1547.CrossRef
14.
go back to reference Xie, S., Chen, J., Luo, J., Xie, P., & Tang, W. (2012). Detection and tracking of underwater object based on forward-scan sonar. In Proceedings of the international conference on intelligent robotics and applications (pp. 341–347). Xie, S., Chen, J., Luo, J., Xie, P., & Tang, W. (2012). Detection and tracking of underwater object based on forward-scan sonar. In Proceedings of the international conference on intelligent robotics and applications (pp. 341–347).
15.
go back to reference Li, M., Ji, H., Wang, X., Weng, L., & Gong, Z. (2013). Underwater object detection and tracking based on multi-beam sonar image processing. In Proceedings of IEEE international conference on robotics and biomimetics (pp. 1–5). Li, M., Ji, H., Wang, X., Weng, L., & Gong, Z. (2013). Underwater object detection and tracking based on multi-beam sonar image processing. In Proceedings of IEEE international conference on robotics and biomimetics (pp. 1–5).
16.
go back to reference Snyder, J., Silverman, Y., Bai, Y., & Maclver, M. (2013). Underwater object tracking using electrical impedance tomography. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1–6). Snyder, J., Silverman, Y., Bai, Y., & Maclver, M. (2013). Underwater object tracking using electrical impedance tomography. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1–6).
17.
go back to reference Walther, D., Edgington, D., & Koch, C. (2004). Detection and tracking of objects in underwater video. In Proceedings of the 2004 computer society conference on computer vision and pattern recognition (pp. 1–5). Walther, D., Edgington, D., & Koch, C. (2004). Detection and tracking of objects in underwater video. In Proceedings of the 2004 computer society conference on computer vision and pattern recognition (pp. 1–5).
18.
go back to reference Chuang, M., Hwang, J., Ye, J., Huang, S., & Williams, K. (2016). Underwater fish tracking for moving cameras based on deformable multiple kernels. arXiv:1603.01695. Chuang, M., Hwang, J., Ye, J., Huang, S., & Williams, K. (2016). Underwater fish tracking for moving cameras based on deformable multiple kernels. arXiv:​1603.​01695.
19.
go back to reference Lee, D., Kim, G., Kim, D., Myung, H., & Choi, H. (2012). Vision-based object detection and tracking for autonomous navigation of underwater robots. Ocean Engineering, 48, 59–68.CrossRef Lee, D., Kim, G., Kim, D., Myung, H., & Choi, H. (2012). Vision-based object detection and tracking for autonomous navigation of underwater robots. Ocean Engineering, 48, 59–68.CrossRef
20.
go back to reference IHI. (2014). Power generation using the Kuroshio current. IHI Engineering Review, 46(2), 1–5. IHI. (2014). Power generation using the Kuroshio current. IHI Engineering Review, 46(2), 1–5.
21.
go back to reference Pattle, R. (1954). Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature, 174(4431), 660.CrossRef Pattle, R. (1954). Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature, 174(4431), 660.CrossRef
22.
go back to reference Mitra, U., Choudhary, S., Hover, F., Hummel, R., Kumar, N., Naryanan, S., et al. (2015). Structured sparse methods for active ocean observation systems with communication constraints. IEEE Communications Magazine, 53(11), 88–96.CrossRef Mitra, U., Choudhary, S., Hover, F., Hummel, R., Kumar, N., Naryanan, S., et al. (2015). Structured sparse methods for active ocean observation systems with communication constraints. IEEE Communications Magazine, 53(11), 88–96.CrossRef
23.
go back to reference Ghassemlooy, Z., Zvanovec, S., Khalighi, M., Popoola, W., & Perze, J. (2017). Optical wireless communication systems. Optik, 151, 1–6.CrossRef Ghassemlooy, Z., Zvanovec, S., Khalighi, M., Popoola, W., & Perze, J. (2017). Optical wireless communication systems. Optik, 151, 1–6.CrossRef
24.
go back to reference Han, G., Jiang, J., Shu, L., Xu, Y., & Wang, F. (2012). Localization algorithms of underwater wireless sensor networks. Sensors, 12(2), 2026–2061.CrossRef Han, G., Jiang, J., Shu, L., Xu, Y., & Wang, F. (2012). Localization algorithms of underwater wireless sensor networks. Sensors, 12(2), 2026–2061.CrossRef
25.
go back to reference Chandrasekhar, V., Seah, W. K., Choo, Y. S., & Ee, H. V. (2006). Localization in underwater sensor networks: Survey and challenges. In Proceedings of the 1st ACM international workshop on underwater networks, Los Angeles, CA, USA, 25 September 2006 (pp. 33–40). Chandrasekhar, V., Seah, W. K., Choo, Y. S., & Ee, H. V. (2006). Localization in underwater sensor networks: Survey and challenges. In Proceedings of the 1st ACM international workshop on underwater networks, Los Angeles, CA, USA, 25 September 2006 (pp. 33–40).
27.
go back to reference Serikawa, S., & Lu, H. (2014). Underwater image dehazing using joint trilateral filter. Computers & Electrical Engineering, 40(1), 41–50.CrossRef Serikawa, S., & Lu, H. (2014). Underwater image dehazing using joint trilateral filter. Computers & Electrical Engineering, 40(1), 41–50.CrossRef
28.
go back to reference Lu, H., Li, Y., Zhang, L., & Serikawa, S. (2015). Contrast enhancement for image in turbid water. Journal of the Optical Society of America A, 32(5), 886–893.CrossRef Lu, H., Li, Y., Zhang, L., & Serikawa, S. (2015). Contrast enhancement for image in turbid water. Journal of the Optical Society of America A, 32(5), 886–893.CrossRef
29.
go back to reference McGillivary, P., & Zykov, V. (2016). Ship-based cloud computing for advancing oceanographic research capabilities. Proceedings of IEEE Oceans, 2016, 1–6. McGillivary, P., & Zykov, V. (2016). Ship-based cloud computing for advancing oceanographic research capabilities. Proceedings of IEEE Oceans, 2016, 1–6.
30.
go back to reference Weng, T., Chen, Y., & Lu, H. (in press). On parallelization of image dehazing with OpenMP. International Journal of High Performance Computing and Networking, 1–12. Weng, T., Chen, Y., & Lu, H. (in press). On parallelization of image dehazing with OpenMP. International Journal of High Performance Computing and Networking, 1–12.
31.
go back to reference Lu, H., Wang, D., Li, Y., Li, J., Li, X., Kim, H., Serikawa, S., & Humar, I. (2019). CONet: A cognitive ocean network. IEEE Wireless Communications, 1–8. Lu, H., Wang, D., Li, Y., Li, J., Li, X., Kim, H., Serikawa, S., & Humar, I. (2019). CONet: A cognitive ocean network. IEEE Wireless Communications, 1–8.
32.
go back to reference Stack, J. (2011). Automation for underwater mine recognition: Current trends and future strategy. Proceedings of SPIE, 80170K, 1–21.MathSciNet Stack, J. (2011). Automation for underwater mine recognition: Current trends and future strategy. Proceedings of SPIE, 80170K, 1–21.MathSciNet
33.
go back to reference Dobeck, G. J., Hyland, J. C., & Smedley, L. (1997). Automated detection/classification of sea mines in sonar imagery. Proceedings of SPIE, 3079, 90–110.CrossRef Dobeck, G. J., Hyland, J. C., & Smedley, L. (1997). Automated detection/classification of sea mines in sonar imagery. Proceedings of SPIE, 3079, 90–110.CrossRef
34.
go back to reference Sternlicht, D. D., Dikeman, R. D., Lemonds, D. W., Korporaal, M. T., & Teranishi, A. M. (2003). Target confirmation architecture for a buried object scanning sonar. Proceedings of IEEE OCEANS, 1, 1–9. Sternlicht, D. D., Dikeman, R. D., Lemonds, D. W., Korporaal, M. T., & Teranishi, A. M. (2003). Target confirmation architecture for a buried object scanning sonar. Proceedings of IEEE OCEANS, 1, 1–9.
35.
go back to reference Nevis, A., Bryan, J., Taylor, J. S., & Cordes, B. (2002). Object detection using a background anomaly approach for electro-optic identification sensors. http://www.dtic.mil, ADA749176. Accessed 12 June 2018. Nevis, A., Bryan, J., Taylor, J. S., & Cordes, B. (2002). Object detection using a background anomaly approach for electro-optic identification sensors. http://​www.​dtic.​mil, ADA749176. Accessed 12 June 2018.
36.
go back to reference Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster, stronger. In Proceedings of the CVPR (pp. 7263–7271). Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster, stronger. In Proceedings of the CVPR (pp. 7263–7271).
37.
go back to reference Lu, H., Li, Y., Chen, M., Kim, H., & Serikawa, S. (2018). Brain intelligence: Go beyond artificial intelligence. Mobile Networks and Application, 23, 368–375.CrossRef Lu, H., Li, Y., Chen, M., Kim, H., & Serikawa, S. (2018). Brain intelligence: Go beyond artificial intelligence. Mobile Networks and Application, 23, 368–375.CrossRef
38.
go back to reference Manjula, R., & Manvi, S. (2013). Coverage optimization based sensor deployment by using PSO for anti-submarine detection in UWASNs. In Proceedings of the international symposium on ocean eletronics, Athani, India (pp. 1–6). Manjula, R., & Manvi, S. (2013). Coverage optimization based sensor deployment by using PSO for anti-submarine detection in UWASNs. In Proceedings of the international symposium on ocean eletronics, Athani, India (pp. 1–6).
39.
go back to reference Cayirci, E., Tezcan, H., Dogan, Y., & Coskun, V. (2006). Wireless sensor networks for underwater surveillance systems. Ad Hoc Networks, 4, 431–446.CrossRef Cayirci, E., Tezcan, H., Dogan, Y., & Coskun, V. (2006). Wireless sensor networks for underwater surveillance systems. Ad Hoc Networks, 4, 431–446.CrossRef
40.
go back to reference Kanazawa, T. (2013). Japan Trench earthquake and tsunami monitoring network of cable-linked 150 ocean bottom observatories and its impact to earth disaster science. In: Proceedings of the 2013 IEEE international underwater technology symposium (pp. 1–6). Kanazawa, T. (2013). Japan Trench earthquake and tsunami monitoring network of cable-linked 150 ocean bottom observatories and its impact to earth disaster science. In: Proceedings of the 2013 IEEE international underwater technology symposium (pp. 1–6).
Metadata
Title
Cognitive ocean of things: a comprehensive review and future trends
Authors
Yujie Li
Shinya Takahashi
Seiichi Serikawa
Publication date
29-01-2019
Publisher
Springer US
Published in
Wireless Networks / Issue 2/2022
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-01953-4

Other articles of this Issue 2/2022

Wireless Networks 2/2022 Go to the issue