Skip to main content
Top
Published in: Meccanica 1-2/2017

29-02-2016

Cohesive energy in graphene/MoS2 heterostructures

Author: Minh-Quy Le

Published in: Meccanica | Issue 1-2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We establish a cohesive law between parallel graphene and MoS2 sheets based on their van der Waals interaction with Lennard-Jones (LJ) potential. Cohesive energy, force, stress and binding energy per carbon atom are explicitly expressed in terms of parameters in the LJ potential, distance between graphene and each of three layers in MoS2 sheet, and area density of atoms on each layer. Molecular dynamics simulations are carried out to support analytical results. Analytical results are useful to investigate the interaction between graphene and MoS2 sheets, and to design nanoelectromechanical systems with graphene/MoS2 heterostructures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200ADSCrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200ADSCrossRef
2.
go back to reference Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388ADSCrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388ADSCrossRef
3.
go back to reference Cai W, Moore AL, Zhu Y, Li X, Chen S, Shi L, Ruoff RS (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10(5):1645–1651ADSCrossRef Cai W, Moore AL, Zhu Y, Li X, Chen S, Shi L, Ruoff RS (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10(5):1645–1651ADSCrossRef
4.
go back to reference Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907ADSCrossRef Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907ADSCrossRef
5.
go back to reference Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92:151911ADSCrossRef Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92:151911ADSCrossRef
6.
go back to reference Xu X et al (2014) Length-dependent thermal conductivity in suspended single-layer graphene. Nat Commun 5:3689ADS Xu X et al (2014) Length-dependent thermal conductivity in suspended single-layer graphene. Nat Commun 5:3689ADS
7.
go back to reference Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150ADSCrossRef Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150ADSCrossRef
8.
go back to reference Sangwan VK, Arnold HN, Jariwala D, Marks TJ, Lauhon LJ, Hersam MC (2013) Low-frequency electronic noise in single-layer MoS2 transistors. Nano Lett 13(9):4351–4355ADSCrossRef Sangwan VK, Arnold HN, Jariwala D, Marks TJ, Lauhon LJ, Hersam MC (2013) Low-frequency electronic noise in single-layer MoS2 transistors. Nano Lett 13(9):4351–4355ADSCrossRef
9.
go back to reference Eknapakul T et al (2014) Electronic structure of a quasi-freestanding MoS2 monolayer. Nano Lett 14:1312–1316ADSCrossRef Eknapakul T et al (2014) Electronic structure of a quasi-freestanding MoS2 monolayer. Nano Lett 14:1312–1316ADSCrossRef
10.
go back to reference Yu L et al (2014) Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett 14(6):3055–3063ADSCrossRef Yu L et al (2014) Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett 14(6):3055–3063ADSCrossRef
11.
go back to reference Zhang W et al. (2014) Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Scientific Reports 4: Article number: 3826 Zhang W et al. (2014) Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Scientific Reports 4: Article number: 3826
12.
go back to reference Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2014) Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2):1102–1120CrossRef Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2014) Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2):1102–1120CrossRef
13.
go back to reference Britne L et al (2013) Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138):1311–1314ADSCrossRef Britne L et al (2013) Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138):1311–1314ADSCrossRef
14.
go back to reference Zan R, Ramasse QM, Jalil R, Georgiou T, Bangert U, Novoselov KS (2013) Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano 7(11):10167–10174CrossRef Zan R, Ramasse QM, Jalil R, Georgiou T, Bangert U, Novoselov KS (2013) Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano 7(11):10167–10174CrossRef
15.
go back to reference Jiang JW, Park HS (2014) Mechanical properties of MoS2/graphene heterostructures. Appl Phys Lett 105:033108ADSCrossRef Jiang JW, Park HS (2014) Mechanical properties of MoS2/graphene heterostructures. Appl Phys Lett 105:033108ADSCrossRef
16.
go back to reference Jiang LY, Huang Y, Jiang H, Ravichandran G, Gao H, Hwang KC, Liue B (2006) A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force. J Mech Phys Solids 54:2436–2452ADSCrossRefMATH Jiang LY, Huang Y, Jiang H, Ravichandran G, Gao H, Hwang KC, Liue B (2006) A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force. J Mech Phys Solids 54:2436–2452ADSCrossRefMATH
17.
go back to reference Zhao J, Jiang JW, Jia Y, Guo W, Rabczuk T (2013) A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates. Carbon 57:108–119CrossRef Zhao J, Jiang JW, Jia Y, Guo W, Rabczuk T (2013) A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates. Carbon 57:108–119CrossRef
18.
go back to reference Zhang C, Lou J, Song J (2014) A cohesive law for interfaces in graphene/hexagonal boron nitride heterostructure. J Appl Phys 115:144308ADSCrossRef Zhang C, Lou J, Song J (2014) A cohesive law for interfaces in graphene/hexagonal boron nitride heterostructure. J Appl Phys 115:144308ADSCrossRef
19.
go back to reference Zhao J, Jia Y, Wei N, Rabczuk T (2015) Binding energy and mechanical stability of two parallel and crossing carbon nanotubes. Proc R Soc A Math Phys Eng Sci 471:20150229ADSCrossRef Zhao J, Jia Y, Wei N, Rabczuk T (2015) Binding energy and mechanical stability of two parallel and crossing carbon nanotubes. Proc R Soc A Math Phys Eng Sci 471:20150229ADSCrossRef
20.
go back to reference Zhao J, Jiang JW, Wang L, Guo W, Rabczuk T (2014) Coarse-grained potentials of single-walled carbon nanotubes. J Mech Phys Solids 71:197–218ADSCrossRef Zhao J, Jiang JW, Wang L, Guo W, Rabczuk T (2014) Coarse-grained potentials of single-walled carbon nanotubes. J Mech Phys Solids 71:197–218ADSCrossRef
21.
go back to reference Ben S, Zhao J, Zhang Y, Qin Y, Rabczuk T (2015) The interface strength and debonding for composite structures: review and recent developments. Compos Struct 129:8–26CrossRef Ben S, Zhao J, Zhang Y, Qin Y, Rabczuk T (2015) The interface strength and debonding for composite structures: review and recent developments. Compos Struct 129:8–26CrossRef
22.
go back to reference Zhao J, Lu L, Zhang Z, Guo W, Rabczuk T (2015) Continuum modeling of the cohesive energy for the interfaces between films, spheres, coats and substrates. Comput Mater Sci 96:432–438CrossRef Zhao J, Lu L, Zhang Z, Guo W, Rabczuk T (2015) Continuum modeling of the cohesive energy for the interfaces between films, spheres, coats and substrates. Comput Mater Sci 96:432–438CrossRef
23.
go back to reference Ben S, Zhao J, Rabczuk T (2014) A theoretical analysis of interface debonding for coated sphere with functionally graded interphase. Compos Struct 117:288–297CrossRef Ben S, Zhao J, Rabczuk T (2014) A theoretical analysis of interface debonding for coated sphere with functionally graded interphase. Compos Struct 117:288–297CrossRef
24.
go back to reference Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39(8):5566–5568ADSCrossRef Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39(8):5566–5568ADSCrossRef
25.
go back to reference Lindsay L, Broido DA (2010) Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B 81:205441ADSCrossRef Lindsay L, Broido DA (2010) Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B 81:205441ADSCrossRef
26.
go back to reference Feng J, Qian X, Huang CW, Li J (2012) Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Phot 6:866CrossRef Feng J, Qian X, Huang CW, Li J (2012) Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Phot 6:866CrossRef
27.
go back to reference Tildesley DJ, Madden PA (1981) An effective pair potential for liquid carbon disulphide. Mol Phys 42(5):1137–1156ADSCrossRef Tildesley DJ, Madden PA (1981) An effective pair potential for liquid carbon disulphide. Mol Phys 42(5):1137–1156ADSCrossRef
28.
go back to reference Stewart JA, Spearot DE (2013) Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2). Modell Simul Mater Sci Eng 21:045003ADSCrossRef Stewart JA, Spearot DE (2013) Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2). Modell Simul Mater Sci Eng 21:045003ADSCrossRef
29.
go back to reference Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19ADSCrossRefMATH Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19ADSCrossRefMATH
30.
go back to reference Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys Rev B 80(15):155453ADSCrossRef Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys Rev B 80(15):155453ADSCrossRef
31.
go back to reference Ataca C, Topsakal M, Akturk E, Ciraci S (2011) A comparative study of lattice dynamics of three- and two-dimensional MoS2. J Phys Chem C 115:16354–16361CrossRef Ataca C, Topsakal M, Akturk E, Ciraci S (2011) A comparative study of lattice dynamics of three- and two-dimensional MoS2. J Phys Chem C 115:16354–16361CrossRef
32.
go back to reference Miwa RH, Scopel WL (2013) Lithium incorporation at the MoS2/graphene interface: an ab initio investigation. J Phys Condens Matter 25:445301ADSCrossRef Miwa RH, Scopel WL (2013) Lithium incorporation at the MoS2/graphene interface: an ab initio investigation. J Phys Condens Matter 25:445301ADSCrossRef
33.
go back to reference Ma Y, Dai Y, Guo M, Niu C, Huang B (2011) Graphene adhesion on MoS2 monolayer: an ab initio study. Nanoscale 3:3883ADSCrossRef Ma Y, Dai Y, Guo M, Niu C, Huang B (2011) Graphene adhesion on MoS2 monolayer: an ab initio study. Nanoscale 3:3883ADSCrossRef
Metadata
Title
Cohesive energy in graphene/MoS2 heterostructures
Author
Minh-Quy Le
Publication date
29-02-2016
Publisher
Springer Netherlands
Published in
Meccanica / Issue 1-2/2017
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-016-0402-6

Other articles of this Issue 1-2/2017

Meccanica 1-2/2017 Go to the issue

Premium Partners