Skip to main content
Top
Published in: Neural Computing and Applications 1/2017

05-05-2016 | Original Article

Collaborative representation analysis methods for feature extraction

Authors: Juliang Hua, Huan Wang, Mingu Ren, Heyan Huang

Published in: Neural Computing and Applications | Special Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, sparse representation (SR) theory gets much success in the fields of pattern recognition and machine learning. Many researchers use SR to design classification methods and dictionary learning via reconstruction residual. It was shown that collaborative representation (CR) is the key part in sparse representation-based classification (SRC) and collaborative representation-based classification (CRC). Both SRC and CRC are good classification methods. Here, we give a collaborative representation analysis (CRA) method for feature extraction. Not like SRC-/CRC-based methods (e.g., SPP and CRP), CRA could directly extract the features like PCA and LDA. Further, a Kernel CRA (KCRA) is developed via kernel tricks. The experimental results on FERET and AR face databases show that CRA and KCRA are two effective feature extraction methods and could get good performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhao W, Chellappa R, Phillips PJ et al (2003) Face recognition: a literature survey [J]. ACM Comput Surv 35(4):399–459CrossRef Zhao W, Chellappa R, Phillips PJ et al (2003) Face recognition: a literature survey [J]. ACM Comput Surv 35(4):399–459CrossRef
2.
go back to reference Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86CrossRef Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86CrossRef
3.
go back to reference Belhumeur V, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720CrossRef Belhumeur V, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720CrossRef
4.
go back to reference Raudys SJ, Jain AK (1991) Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans Pattern Anal Mach Intell 13(3):252–264CrossRef Raudys SJ, Jain AK (1991) Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans Pattern Anal Mach Intell 13(3):252–264CrossRef
5.
go back to reference Yang J, Yang JY (2003) Why can LDA be performed in PCA transformed space? Pattern Recognit 36(2):563–566CrossRef Yang J, Yang JY (2003) Why can LDA be performed in PCA transformed space? Pattern Recognit 36(2):563–566CrossRef
6.
go back to reference Hong ZQ, Yang JY (1991) Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recognit 24(4):317–324MathSciNetCrossRef Hong ZQ, Yang JY (1991) Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recognit 24(4):317–324MathSciNetCrossRef
7.
go back to reference Jin Z, Yang JY, Hu Z, Lou Z (2001) Face recognition based on the uncorrelated discrimination Transformation. Pattern Recognit 34(7):1405–1416CrossRefMATH Jin Z, Yang JY, Hu Z, Lou Z (2001) Face recognition based on the uncorrelated discrimination Transformation. Pattern Recognit 34(7):1405–1416CrossRefMATH
8.
go back to reference Xu Y, Yang JY, Jin Z (2003) Theory analysis on FSLDA and ULDA. Pattern Recognit 36(12):3031–3033CrossRefMATH Xu Y, Yang JY, Jin Z (2003) Theory analysis on FSLDA and ULDA. Pattern Recognit 36(12):3031–3033CrossRefMATH
11.
go back to reference Yu H, Yang J (2001) A direct LDA algorithm for high dimensional data—with application to face recognition. Pattern Recognit 34(10):2067–2070CrossRefMATH Yu H, Yang J (2001) A direct LDA algorithm for high dimensional data—with application to face recognition. Pattern Recognit 34(10):2067–2070CrossRefMATH
12.
go back to reference Li H, Jiang T, Zhang K (2006) Efficient and robust feature extraction by maximum margin criterion. IEEE Trans Neural Netw 17(1):1157–1165CrossRef Li H, Jiang T, Zhang K (2006) Efficient and robust feature extraction by maximum margin criterion. IEEE Trans Neural Netw 17(1):1157–1165CrossRef
13.
go back to reference Schölkopf B, Smola A, Müller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319CrossRef Schölkopf B, Smola A, Müller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319CrossRef
14.
go back to reference Mika S, Rätsch G, Weston J, Schölkopf B, Müller K-R (1999) Fisher discriminant analysis with kernels. In: Proc. IEEE Int’l Workshop Neural Networks for Signal Processing IX, 199: 41–48 Mika S, Rätsch G, Weston J, Schölkopf B, Müller K-R (1999) Fisher discriminant analysis with kernels. In: Proc. IEEE Int’l Workshop Neural Networks for Signal Processing IX, 199: 41–48
15.
go back to reference Yang J, Frangi AF, Yang JY, Zhang D (2005) KPCA Plus LDA: a complete kernel fisher discriminant frame work for feature extraction and recognition. IEEE Trans Pattern Anal Mach Intell 27(2):230–244CrossRef Yang J, Frangi AF, Yang JY, Zhang D (2005) KPCA Plus LDA: a complete kernel fisher discriminant frame work for feature extraction and recognition. IEEE Trans Pattern Anal Mach Intell 27(2):230–244CrossRef
16.
go back to reference Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323CrossRef Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323CrossRef
17.
go back to reference Roweis ST, Saul LK (2000) Nonlinear dimension reduction by locally linear embedding. Science 290:2323–2326CrossRef Roweis ST, Saul LK (2000) Nonlinear dimension reduction by locally linear embedding. Science 290:2323–2326CrossRef
18.
go back to reference Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396CrossRefMATH Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396CrossRefMATH
19.
go back to reference He X, Yan S, Hu Y, Niyogi P, Zhang H (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340CrossRef He X, Yan S, Hu Y, Niyogi P, Zhang H (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340CrossRef
20.
go back to reference Yang J, Zhang D, Yang J, Niu B (2007) Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans Pattern Anal Mach Intell 29(4):650–664CrossRef Yang J, Zhang D, Yang J, Niu B (2007) Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans Pattern Anal Mach Intell 29(4):650–664CrossRef
21.
go back to reference Xu Y, Zhong A, Yang J, Zhang D (2010) LPP solution schemes for use with face recognition. Pattern Recognit 43(12):4165–4176CrossRefMATH Xu Y, Zhong A, Yang J, Zhang D (2010) LPP solution schemes for use with face recognition. Pattern Recognit 43(12):4165–4176CrossRefMATH
22.
go back to reference Yan S, Xu D, Zhang B, Zhang HJ (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51CrossRef Yan S, Xu D, Zhang B, Zhang HJ (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51CrossRef
23.
go back to reference Yang W, Sun C, Zhang L (2011) A multi-manifold discriminant analysis method for image feature extraction. Pattern Recognit 44(8):1649–1657CrossRefMATH Yang W, Sun C, Zhang L (2011) A multi-manifold discriminant analysis method for image feature extraction. Pattern Recognit 44(8):1649–1657CrossRefMATH
24.
go back to reference Xu Y, Zhu X et al (2013) Using the original and symmetrical face training samples to perform representation based two-step face recognition. Pattern Recognit 46:1151–1158CrossRef Xu Y, Zhu X et al (2013) Using the original and symmetrical face training samples to perform representation based two-step face recognition. Pattern Recognit 46:1151–1158CrossRef
25.
go back to reference Wright J, Yang A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRef Wright J, Yang A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRef
26.
go back to reference Yang J, Wright J, Huang T, Ma Y (2008) Image super-resolution as sparse representation of raw patches, CVPR Yang J, Wright J, Huang T, Ma Y (2008) Image super-resolution as sparse representation of raw patches, CVPR
27.
go back to reference Rao S, Tron R, Vidal R, Ma Y (2008) Motion segmentation via robust subspace separation in the presence of outlying, incomplete, and corrupted trajectories, CVPR Rao S, Tron R, Vidal R, Ma Y (2008) Motion segmentation via robust subspace separation in the presence of outlying, incomplete, and corrupted trajectories, CVPR
28.
go back to reference Mairal J, Sapiro G, Elad M (2008) Learning multiscale sparse representations for image and video restoration. SIAM MMS 7(1):214–241MathSciNetCrossRefMATH Mairal J, Sapiro G, Elad M (2008) Learning multiscale sparse representations for image and video restoration. SIAM MMS 7(1):214–241MathSciNetCrossRefMATH
29.
go back to reference Wang H, Yuan C, Hu W et al (2014) Action recognition using nonnegative action component representation and sparse basis selection. IEEE Trans Image Process 23(2):570–581MathSciNetCrossRefMATH Wang H, Yuan C, Hu W et al (2014) Action recognition using nonnegative action component representation and sparse basis selection. IEEE Trans Image Process 23(2):570–581MathSciNetCrossRefMATH
30.
go back to reference Liu W, Tao D, Cheng J, Tang Y (2014) Multiview Hessian discriminative sparse coding for image annotation. Comput Vis Image Underst 118:50–60CrossRef Liu W, Tao D, Cheng J, Tang Y (2014) Multiview Hessian discriminative sparse coding for image annotation. Comput Vis Image Underst 118:50–60CrossRef
31.
go back to reference Liu W, Song C, Wang Y (2012) Facial expression recognition based on discriminative dictionary learning, ICPR Liu W, Song C, Wang Y (2012) Facial expression recognition based on discriminative dictionary learning, ICPR
32.
go back to reference Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recognit 43(1):331–341CrossRefMATH Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recognit 43(1):331–341CrossRefMATH
33.
34.
go back to reference Yang J, Chu D, Zhang L, Xu Y, Yang J (2013) Sparse representation classifier steered discriminative projection with application to face recognition. IEEE Trans Neural Netw Learn Syst 24(7):1023–1034CrossRef Yang J, Chu D, Zhang L, Xu Y, Yang J (2013) Sparse representation classifier steered discriminative projection with application to face recognition. IEEE Trans Neural Netw Learn Syst 24(7):1023–1034CrossRef
35.
36.
go back to reference Lai Z, Wan M, Jin Z, Yang J (2011) Sparse two-dimensional local discriminant projections for feature extraction. Neurocomputing 74(4):629–637CrossRef Lai Z, Wan M, Jin Z, Yang J (2011) Sparse two-dimensional local discriminant projections for feature extraction. Neurocomputing 74(4):629–637CrossRef
37.
go back to reference Lai Z, Wong WK, Jin Z, Yang J, Xu Y (2012) Sparse approximation to the eigen subspace for discrimination. IEEE Trans Neural Netw Learn Syst 23(12):1948–1960CrossRef Lai Z, Wong WK, Jin Z, Yang J, Xu Y (2012) Sparse approximation to the eigen subspace for discrimination. IEEE Trans Neural Netw Learn Syst 23(12):1948–1960CrossRef
38.
go back to reference Xu Y, Zhang D, Yang J, Yang J-Y (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 21(9):1255–1262MathSciNetCrossRef Xu Y, Zhang D, Yang J, Yang J-Y (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 21(9):1255–1262MathSciNetCrossRef
39.
go back to reference Xu Y, Zhu Q (2013) A simple and fast representation-based face recognition method. Neural Comput Appl 22(7–8):1543–1549CrossRef Xu Y, Zhu Q (2013) A simple and fast representation-based face recognition method. Neural Comput Appl 22(7–8):1543–1549CrossRef
40.
go back to reference Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition, ICCV Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition, ICCV
41.
go back to reference Yang W, Wang Z, Sun C (2015) A collaborative representation based projections method for feature extraction. Pattern Recognit 48(1):20–27CrossRef Yang W, Wang Z, Sun C (2015) A collaborative representation based projections method for feature extraction. Pattern Recognit 48(1):20–27CrossRef
42.
go back to reference Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The FERET evaluation methodology for face recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104CrossRef Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The FERET evaluation methodology for face recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104CrossRef
45.
go back to reference Martinez AM, Benavente R. The AR Face Database, CVC Technical Report #24, June 1998 Martinez AM, Benavente R. The AR Face Database, CVC Technical Report #24, June 1998
Metadata
Title
Collaborative representation analysis methods for feature extraction
Authors
Juliang Hua
Huan Wang
Mingu Ren
Heyan Huang
Publication date
05-05-2016
Publisher
Springer London
Published in
Neural Computing and Applications / Issue Special Issue 1/2017
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2299-3

Other articles of this Special Issue 1/2017

Neural Computing and Applications 1/2017 Go to the issue

Premium Partner