Skip to main content
Top

2019 | OriginalPaper | Chapter

55. Collagen-Based Hydrogels and Their Applications for Tissue Engineering and Regenerative Medicine

Authors : Sorina Dinescu, Madalina Albu Kaya, Leona Chitoiu, Simona Ignat, Durmus Alpaslan Kaya, Marieta Costache

Published in: Cellulose-Based Superabsorbent Hydrogels

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A promising solution for soft tissue regeneration is tissue engineering, a multidisciplinary field of research which involves the use of biomaterials, growth factors, and stem cells in order to repair, replace, or regenerate tissues and organs damaged by injury or disease. The success of tissue engineering (TE) depends on the composition and microstructure of the used scaffolds. Ideally, scaffolds have to be similar to natural tissues. Collagen is the major component of the extracellular matrix of most soft tissues. The interactions between collagen and cells are vital in the wound healing process and in adult tissue remodeling, collagen being able to support differentiation and maintenance of cellular phenotype. As a natural molecule, collagen possesses the major advantage of being biodegradable, biocompatible, easily available, and highly versatile and presents low antigenicity. This chapter aims to present an overview on the structure, properties, and biomedical applications of collagen hydrogels. Moreover, it introduces the reader to the latest research in the field of tissue engineering related to collagen. It also displays the results we obtained as a joint bioengineering group on collagen hydrogels designed for soft (ATE) or cartilage tissue engineering (CTE) applications: type I collagen hydrogels improved with either silk sericin (CollSS) or with pro-chondrogenic factors – hyaluronic acid and chondroitin sulfate (CollSSHACS). Results indicated in both cases the positive influence of sericin on the interaction between cells and the surface of the hydrogels. In the absence of HA and CS, specific chondrogenic inducers, CollSS hydrogel is adapted for soft tissue reconstruction, whether the addition of HA and CS transforms CollSSHACS into a suitable hydrogel formula for semihard tissue repair via modern strategies in tissue engineering and regenerative medicine.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R (2017) A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C Mater Biol Appl 79:958–971CrossRef Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R (2017) A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C Mater Biol Appl 79:958–971CrossRef
2.
go back to reference Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRef Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRef
3.
go back to reference Gyles DA, Castro LD, Carrera Silva JO Jr, Ribeiro-Costa RM (2017) A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J 88:373–392CrossRef Gyles DA, Castro LD, Carrera Silva JO Jr, Ribeiro-Costa RM (2017) A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J 88:373–392CrossRef
4.
go back to reference Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, Dixon B, Chen P (2017) Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 35(5):530–544CrossRef Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, Dixon B, Chen P (2017) Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 35(5):530–544CrossRef
5.
go back to reference Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Rezaei A, Mashayekhan S, Sanati-Nezhad A (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 62:42CrossRef Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Rezaei A, Mashayekhan S, Sanati-Nezhad A (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 62:42CrossRef
6.
go back to reference Saldin LT, Cramer MC, Velankar S, White LJ, Badylak SF (2017) Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater 49:1–15CrossRef Saldin LT, Cramer MC, Velankar S, White LJ, Badylak SF (2017) Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater 49:1–15CrossRef
7.
go back to reference Ramachandran GN (1967) Structure of collagen at the molecular level. In: Ramachandran GN (ed) Treatise on Collagen. Academic, London, pp 747–748 Ramachandran GN (1967) Structure of collagen at the molecular level. In: Ramachandran GN (ed) Treatise on Collagen. Academic, London, pp 747–748
8.
go back to reference Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potential for therapy. Annu Rev Biochem 64:403–434CrossRef Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potential for therapy. Annu Rev Biochem 64:403–434CrossRef
9.
go back to reference Uitto J, Pulkkinen L, Chu ML (1999) Collagen. In: Freedberg IM (ed) Dermatology in general medicine. McGraw-Hill, New York, pp 303–314 Uitto J, Pulkkinen L, Chu ML (1999) Collagen. In: Freedberg IM (ed) Dermatology in general medicine. McGraw-Hill, New York, pp 303–314
10.
go back to reference Mecham R (2012) Overview of extracellular matrix. Curr Protoc Cell Biol 57:10.1.1–10.1.16 Mecham R (2012) Overview of extracellular matrix. Curr Protoc Cell Biol 57:10.1.1–10.1.16
11.
go back to reference Eyre DR (1980) Collagen: molecular diversity in the body’s protein scaffold. Science 207(4437):1315–1322CrossRef Eyre DR (1980) Collagen: molecular diversity in the body’s protein scaffold. Science 207(4437):1315–1322CrossRef
12.
go back to reference Tian Z, Liu W, Li G (2016) The microstructure and stability of collagen hydrogel cross-linked by glutaraldehyde. Polym Degrad Stab 130:264–270CrossRef Tian Z, Liu W, Li G (2016) The microstructure and stability of collagen hydrogel cross-linked by glutaraldehyde. Polym Degrad Stab 130:264–270CrossRef
13.
go back to reference Friess W (1998) Collagen – biomaterial for drug delivery. Eur J Pharm Biopharm 45:113–136CrossRef Friess W (1998) Collagen – biomaterial for drug delivery. Eur J Pharm Biopharm 45:113–136CrossRef
14.
go back to reference Khor E (1997) Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 18:95–105CrossRef Khor E (1997) Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 18:95–105CrossRef
15.
go back to reference Jayakrishnan A, Jameela SR (1996) Glutaraldehyde as a fixative in bioprosthetic and drug delivery matrices. Biomaterials 17:471–484CrossRef Jayakrishnan A, Jameela SR (1996) Glutaraldehyde as a fixative in bioprosthetic and drug delivery matrices. Biomaterials 17:471–484CrossRef
16.
go back to reference Dunn MG, Avasarala PN, Zawadsky JP (1993) Optimization of extruded collagen fibers for ACL reconstruction. J Biomed Mater Res 27:1545–1552CrossRef Dunn MG, Avasarala PN, Zawadsky JP (1993) Optimization of extruded collagen fibers for ACL reconstruction. J Biomed Mater Res 27:1545–1552CrossRef
17.
go back to reference Bigi A, Cojazzi G, Panzavolta S, Rubini K, Roveri N (2001) Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 22:763–768CrossRef Bigi A, Cojazzi G, Panzavolta S, Rubini K, Roveri N (2001) Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 22:763–768CrossRef
18.
go back to reference Nimni ME, Cheung DT, Strates B, Kodama M, Sheikh K (1988) Bioprosthesis derived from cross-linked and chemically modified collagen tissues. In: Collagen and biomechanics, vol 2. CRC Press, Boca Raton, pp 202–206 Nimni ME, Cheung DT, Strates B, Kodama M, Sheikh K (1988) Bioprosthesis derived from cross-linked and chemically modified collagen tissues. In: Collagen and biomechanics, vol 2. CRC Press, Boca Raton, pp 202–206
19.
go back to reference Olde Damink LHH, Dijkstra PJ, van Luyn MJA, van Wachem PB, Nieuwenhuis P, Feijen J (1985) Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J Mater Sci Mater Med 6:460–472CrossRef Olde Damink LHH, Dijkstra PJ, van Luyn MJA, van Wachem PB, Nieuwenhuis P, Feijen J (1985) Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J Mater Sci Mater Med 6:460–472CrossRef
20.
go back to reference Speer DP, Chvapil M, Eskelson CD, Ulreich J (1980) Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mater Res 14:753–764CrossRef Speer DP, Chvapil M, Eskelson CD, Ulreich J (1980) Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mater Res 14:753–764CrossRef
21.
go back to reference Goissis G, Marcantonio E Jr, Marcantonio RAC, Lia RCC, Cancia DCJ, De Carvalho WM (1999) Biocompatibility studies of anionic collagen membranes with different degree of glutaraldehyde cross-linking. Biomaterials 20:27–34CrossRef Goissis G, Marcantonio E Jr, Marcantonio RAC, Lia RCC, Cancia DCJ, De Carvalho WM (1999) Biocompatibility studies of anionic collagen membranes with different degree of glutaraldehyde cross-linking. Biomaterials 20:27–34CrossRef
22.
go back to reference Tu R, Lu CL, Thzagarajan K, Wang E, Nguyen H, Shen S, Hata C, Quijano RC (1993) Kinetic study of collagen fixation with polyepoxy fixatives. J Biomed Mater Res 27:3–9CrossRef Tu R, Lu CL, Thzagarajan K, Wang E, Nguyen H, Shen S, Hata C, Quijano RC (1993) Kinetic study of collagen fixation with polyepoxy fixatives. J Biomed Mater Res 27:3–9CrossRef
23.
go back to reference Nishi C, Nakajima N, Ikada Y (1995) In vitro evaluation of cytotoxicity of diepoxy compounds used for biomedical modification. J Biomed Mater Res 29:829–834CrossRef Nishi C, Nakajima N, Ikada Y (1995) In vitro evaluation of cytotoxicity of diepoxy compounds used for biomedical modification. J Biomed Mater Res 29:829–834CrossRef
24.
go back to reference Petide H, Rault I, Huc A, Menasche PH, Herbage D (1990) Use of the acyl azide method for crosslinking collagen-rich tissues such as pericardium. J Biomed Mater Res 24:179–187CrossRef Petide H, Rault I, Huc A, Menasche PH, Herbage D (1990) Use of the acyl azide method for crosslinking collagen-rich tissues such as pericardium. J Biomed Mater Res 24:179–187CrossRef
25.
go back to reference Anselme K, Petite H, Herbage D (1992) Inhibition of calcification in vivo by acyl azide crosslinking of a collagen-glycosaminoglycan sponge. Matrix 12:264–273CrossRef Anselme K, Petite H, Herbage D (1992) Inhibition of calcification in vivo by acyl azide crosslinking of a collagen-glycosaminoglycan sponge. Matrix 12:264–273CrossRef
26.
go back to reference Liu T, Shi L, Gu Z, Dan W, Dan N (2017) A novel combined polyphenol-aldehyde crosslinking of collagen film- applications in biomedical materials. Int J Biol Macromol 101:889–895CrossRef Liu T, Shi L, Gu Z, Dan W, Dan N (2017) A novel combined polyphenol-aldehyde crosslinking of collagen film- applications in biomedical materials. Int J Biol Macromol 101:889–895CrossRef
27.
go back to reference Yang X, Guo L, Fan Y, Zhang X (2013) Preparation and characterization of macromolecule cross-linked collagen hydrogels for chondrocyte delivery. Int J Biol Macromol 61:487–493CrossRef Yang X, Guo L, Fan Y, Zhang X (2013) Preparation and characterization of macromolecule cross-linked collagen hydrogels for chondrocyte delivery. Int J Biol Macromol 61:487–493CrossRef
28.
go back to reference Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRef Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRef
29.
go back to reference Sassi ML, Eriksen H, Risteli L, Niemi S, Mansell J, Gowen M, Risteli J (2000) Immunochemical characterization of assay for carboxyterminal telopeptide of human type I collagen: loss of antigenicity by treatment with cathepsin. Bone 26:367–373CrossRef Sassi ML, Eriksen H, Risteli L, Niemi S, Mansell J, Gowen M, Risteli J (2000) Immunochemical characterization of assay for carboxyterminal telopeptide of human type I collagen: loss of antigenicity by treatment with cathepsin. Bone 26:367–373CrossRef
30.
go back to reference Kleimann HK, Klebe RJ, Martin GR (1981) Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol 88:473–485CrossRef Kleimann HK, Klebe RJ, Martin GR (1981) Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol 88:473–485CrossRef
31.
go back to reference Skopinska-Wisniewska J, Kuderko J, Bajek A, Maj M, Sionkowska A, Ziegler-Borowska M (2016) Collagen/elastin hydrogels cross-linked by squaric acid. Mater Sci Eng C Mater Biol Appl 60:100–108CrossRef Skopinska-Wisniewska J, Kuderko J, Bajek A, Maj M, Sionkowska A, Ziegler-Borowska M (2016) Collagen/elastin hydrogels cross-linked by squaric acid. Mater Sci Eng C Mater Biol Appl 60:100–108CrossRef
32.
go back to reference Vulpe R, Le Cerf D, Dulong V, Popa M, Peptu C, Verestiuc L, Picton L (2016) Rheological study of in-situ crosslinkable hydrogels based on hyaluronanic acid, collagen and sericin. Mater Sci Eng C Mater Biol Appl 69:388–397CrossRef Vulpe R, Le Cerf D, Dulong V, Popa M, Peptu C, Verestiuc L, Picton L (2016) Rheological study of in-situ crosslinkable hydrogels based on hyaluronanic acid, collagen and sericin. Mater Sci Eng C Mater Biol Appl 69:388–397CrossRef
33.
go back to reference Ma Z, He Z, Han F, Zhong Z, Chen L, Li B (2016) Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration. Colloids Surf B Biointerfaces 143:81–87CrossRef Ma Z, He Z, Han F, Zhong Z, Chen L, Li B (2016) Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration. Colloids Surf B Biointerfaces 143:81–87CrossRef
34.
go back to reference Demeter M, Virgolici M, Vancea C, Scarisoreanu A, Albu Kaya MG, Meltzer V (2017) Network structure studies on γ–irradiated collagen–PVP superabsorbent hydrogels. Radiat Phys Chem 131:51–59CrossRef Demeter M, Virgolici M, Vancea C, Scarisoreanu A, Albu Kaya MG, Meltzer V (2017) Network structure studies on γ–irradiated collagen–PVP superabsorbent hydrogels. Radiat Phys Chem 131:51–59CrossRef
35.
go back to reference Deepthi S, Nivedhitha Sundaram M, Deepti Kadavan J, Jayakumar R (2016) Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohydr Polym 153:492–500CrossRef Deepthi S, Nivedhitha Sundaram M, Deepti Kadavan J, Jayakumar R (2016) Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohydr Polym 153:492–500CrossRef
36.
go back to reference Nistor MT, Vasile C, Chiriac AP (2015) Hybrid collagen-based hydrogels with embedded montmorillonite nanoparticles. Mater Sci Eng C Mater Biol Appl 53:212–221CrossRef Nistor MT, Vasile C, Chiriac AP (2015) Hybrid collagen-based hydrogels with embedded montmorillonite nanoparticles. Mater Sci Eng C Mater Biol Appl 53:212–221CrossRef
37.
go back to reference Burgeson RE, Nimni ME (1992) Molecular structure and tissue distribution. Clin Orthop Relat Res 282:250–272 Burgeson RE, Nimni ME (1992) Molecular structure and tissue distribution. Clin Orthop Relat Res 282:250–272
38.
go back to reference Hayrapetyan A, Bongio M, Leeuwenburgh SC, Jansen JA, van den Beuken JJ (2016) Effect of nano-HA/collagen composite hydrogels on osteogenic behaviour of mesenchymal stromal cells. Stem Cell Rev 12(3):352–364CrossRef Hayrapetyan A, Bongio M, Leeuwenburgh SC, Jansen JA, van den Beuken JJ (2016) Effect of nano-HA/collagen composite hydrogels on osteogenic behaviour of mesenchymal stromal cells. Stem Cell Rev 12(3):352–364CrossRef
39.
go back to reference Gurumurty B, Bierdeman PC, Janorkar AV (2016) Composition of elastin like polypeptide-collagen composite scaffold influences in vitro osteogenic activity of human adipose derived stem cells. Dent Mater 32(10):1270–1280CrossRef Gurumurty B, Bierdeman PC, Janorkar AV (2016) Composition of elastin like polypeptide-collagen composite scaffold influences in vitro osteogenic activity of human adipose derived stem cells. Dent Mater 32(10):1270–1280CrossRef
40.
go back to reference Chen L, Wu Z, Zhou Y, Li L, Wang Y, Wang Z, Chen Y, Zhang P (2017) Biomimetic porous collagen/hydroxyapatite scaffold for bone tissue engineering. J Appl Polym Sci 134(37):45271CrossRef Chen L, Wu Z, Zhou Y, Li L, Wang Y, Wang Z, Chen Y, Zhang P (2017) Biomimetic porous collagen/hydroxyapatite scaffold for bone tissue engineering. J Appl Polym Sci 134(37):45271CrossRef
41.
go back to reference Hertweck J, Ritz U, Götz H, Schottel PC, Rommens PM, Hofmann A (2018) CD34+ cells 756 seeded in collagen scaffolds promote bone formation in a mouse calvarial defect model. 757 J Biomed Mater Res B Appl Biomater 106(4):1505–1516 Hertweck J, Ritz U, Götz H, Schottel PC, Rommens PM, Hofmann A (2018) CD34+ cells 756 seeded in collagen scaffolds promote bone formation in a mouse calvarial defect model. 757 J Biomed Mater Res B Appl Biomater 106(4):1505–1516
42.
go back to reference Nguyen BB, Moriarty RA, Kamalitdinov T, Etheridge JM, Fisher JP (2017) Collagen hydrogel scaffold promotes mesenchymal stem cell and endothelial cell coculture for bone tissue engineering. J Biomed Mater Res A 105(4):1123–1131CrossRef Nguyen BB, Moriarty RA, Kamalitdinov T, Etheridge JM, Fisher JP (2017) Collagen hydrogel scaffold promotes mesenchymal stem cell and endothelial cell coculture for bone tissue engineering. J Biomed Mater Res A 105(4):1123–1131CrossRef
43.
go back to reference Lee HJ, Kim YB, Ahn SH, Lee JS, Jang CH, Yoon H, Chun W, Kim GH (2015) A new approach for fabricating collagen/ECM-based bioinks using preosteoblasts and human adipose stem cells. Adv Healthc Mater 244(9):1359–1368CrossRef Lee HJ, Kim YB, Ahn SH, Lee JS, Jang CH, Yoon H, Chun W, Kim GH (2015) A new approach for fabricating collagen/ECM-based bioinks using preosteoblasts and human adipose stem cells. Adv Healthc Mater 244(9):1359–1368CrossRef
44.
go back to reference Parmar PA, Skaalure SC, Chow LW, St-Pierre JP, Stoichevska V, Peng YY, Werkmeister JA, Ramshaw JA, Stevens MM (2015) Temporally degradable collagen-mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells. Biomaterials 99:56–71CrossRef Parmar PA, Skaalure SC, Chow LW, St-Pierre JP, Stoichevska V, Peng YY, Werkmeister JA, Ramshaw JA, Stevens MM (2015) Temporally degradable collagen-mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells. Biomaterials 99:56–71CrossRef
45.
go back to reference Fensky F, Reichert JC, Traube A, Rackwitz L, Siebenlist S, Nöth U (2014) Chondrogenic predifferentiation of human mesenchymal stem cells in collagen type I hydrogels. Biomed Tech (Berl) 59(5):375–383CrossRef Fensky F, Reichert JC, Traube A, Rackwitz L, Siebenlist S, Nöth U (2014) Chondrogenic predifferentiation of human mesenchymal stem cells in collagen type I hydrogels. Biomed Tech (Berl) 59(5):375–383CrossRef
46.
go back to reference Chen X, Zhang F, He X, Xu Y, Yang Z, Chen L, Zhou S, Yang Y, Zhou Z, Sheng W, Zeng Y (2013) Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering. Injury 44(4):540–549CrossRef Chen X, Zhang F, He X, Xu Y, Yang Z, Chen L, Zhou S, Yang Y, Zhou Z, Sheng W, Zeng Y (2013) Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering. Injury 44(4):540–549CrossRef
47.
go back to reference Yuan T, Zhang L, Li K, Fan H, Fan Y, Liang J, Zhang X (2014) Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 102(2):337–344CrossRef Yuan T, Zhang L, Li K, Fan H, Fan Y, Liang J, Zhang X (2014) Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 102(2):337–344CrossRef
48.
go back to reference Yang J, Chen X, Yuan T, Yang X, Fan Y, Zhang X (2017) Regulation of the secretion of immunoregulatory factors of mesenchymal stem cells (MSCs) by collagen-based scaffolds during chondrogenesis. Mater Sci Eng C Mater Biol Appl 70.(Pt 2:983–991CrossRef Yang J, Chen X, Yuan T, Yang X, Fan Y, Zhang X (2017) Regulation of the secretion of immunoregulatory factors of mesenchymal stem cells (MSCs) by collagen-based scaffolds during chondrogenesis. Mater Sci Eng C Mater Biol Appl 70.(Pt 2:983–991CrossRef
49.
go back to reference Li MT, Ruehle MA, Stevens HY, Servies N, Willett NJ, Karthikeyakannan S, Warren GL, Guldberg RE, Krishnan L (2017) Skeletal myoblast-seeded vascularized tissue scaffolds in the treatment of a large volumetric muscle defect in the rat biceps femoris muscle. Tissue Eng Part A 23:989CrossRef Li MT, Ruehle MA, Stevens HY, Servies N, Willett NJ, Karthikeyakannan S, Warren GL, Guldberg RE, Krishnan L (2017) Skeletal myoblast-seeded vascularized tissue scaffolds in the treatment of a large volumetric muscle defect in the rat biceps femoris muscle. Tissue Eng Part A 23:989CrossRef
50.
go back to reference Xu G, Wang X, Deng C, Teng X, Suuronen EJ, Shen Z, Zhong Z (2015) Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)-poly(ethylene glycol)-oligo(acryloyl carbonate) copolymer for functional cardiac regeneration. Acta Biomater 15:55–64CrossRef Xu G, Wang X, Deng C, Teng X, Suuronen EJ, Shen Z, Zhong Z (2015) Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)-poly(ethylene glycol)-oligo(acryloyl carbonate) copolymer for functional cardiac regeneration. Acta Biomater 15:55–64CrossRef
51.
go back to reference van Marion MH, Bax NA, van Turnhout MC, Mauretti A, van der Schaft DW, Goumans MJ, Bouten CV (2015) Behavior of CMPCs in unidirectional constrained and stress-free 3D hydrogels. J Mol Cell Cardiol 87:79–91CrossRef van Marion MH, Bax NA, van Turnhout MC, Mauretti A, van der Schaft DW, Goumans MJ, Bouten CV (2015) Behavior of CMPCs in unidirectional constrained and stress-free 3D hydrogels. J Mol Cell Cardiol 87:79–91CrossRef
52.
go back to reference Ketabat F, Karkhaneh A, Mehdinavaz Aghdam R, Hossein Ahmadi Tafti S (2017) Injectable conductive collagen/alginate/polypyrrole hydrogels as a biocompatible system for biomedical applications. J Biomater Sci Polym Ed 28(8):794–805CrossRef Ketabat F, Karkhaneh A, Mehdinavaz Aghdam R, Hossein Ahmadi Tafti S (2017) Injectable conductive collagen/alginate/polypyrrole hydrogels as a biocompatible system for biomedical applications. J Biomater Sci Polym Ed 28(8):794–805CrossRef
53.
go back to reference Kaneko A, Matsushita A, Sankai Y (2015) A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats. Biomed Mater 10(1):015008CrossRef Kaneko A, Matsushita A, Sankai Y (2015) A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats. Biomed Mater 10(1):015008CrossRef
54.
go back to reference Lee JH, Lee JY, Yang SH, Lee EJ, Kim HW (2014) Carbon nanotube-collagen three-dimensional culture of mesenchymal stem cells promotes expression of neural phenotypes and secretion of neurotrophic factors. Acta Biomater 10(10):4425–4436CrossRef Lee JH, Lee JY, Yang SH, Lee EJ, Kim HW (2014) Carbon nanotube-collagen three-dimensional culture of mesenchymal stem cells promotes expression of neural phenotypes and secretion of neurotrophic factors. Acta Biomater 10(10):4425–4436CrossRef
55.
go back to reference Park JW, Kang YD, Kim JS, Lee JH, Kim HW (2014) 3D microenvironment of collagen hydrogel enhances the release of neurotrophic factors from human umbilical cord blood cells and stimulates the neurite outgrowth of human neural precursor cells. Biochem Biophys Res Commun 447(3):400–406CrossRef Park JW, Kang YD, Kim JS, Lee JH, Kim HW (2014) 3D microenvironment of collagen hydrogel enhances the release of neurotrophic factors from human umbilical cord blood cells and stimulates the neurite outgrowth of human neural precursor cells. Biochem Biophys Res Commun 447(3):400–406CrossRef
56.
go back to reference Roberts MA, Kotha SS, Phong KT, Zheng Y (2016) Micropatterning and assembly of 3D microvessels. J Vis Exp 115:e54457, 1–10 Roberts MA, Kotha SS, Phong KT, Zheng Y (2016) Micropatterning and assembly of 3D microvessels. J Vis Exp 115:e54457, 1–10
57.
go back to reference Kuo KC, Lin RZ, Tien HW, Wu PY, Li YC, Melero-Martin JM, Chen YC (2015) Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix. Acta Biomater 27:151–166CrossRef Kuo KC, Lin RZ, Tien HW, Wu PY, Li YC, Melero-Martin JM, Chen YC (2015) Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix. Acta Biomater 27:151–166CrossRef
58.
go back to reference Rafat M, Xeroudaki M, Koulikovska M, Sherrell P, Groth F, Fagerholm P, Lagali N (2016) Composite core-and-skirt collagen hydrogels with differential degradation for corneal therapeutic applications. Biomaterials 83:142–155CrossRef Rafat M, Xeroudaki M, Koulikovska M, Sherrell P, Groth F, Fagerholm P, Lagali N (2016) Composite core-and-skirt collagen hydrogels with differential degradation for corneal therapeutic applications. Biomaterials 83:142–155CrossRef
59.
go back to reference Ahn JI, Kuffova L, Merrett K, Mitra D, Forrester JV, Li F, Griffith M (2013) Crosslinked collagen hydrogels as corneal implants: effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers. Acta Biomater 9(8):7796–7805CrossRef Ahn JI, Kuffova L, Merrett K, Mitra D, Forrester JV, Li F, Griffith M (2013) Crosslinked collagen hydrogels as corneal implants: effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers. Acta Biomater 9(8):7796–7805CrossRef
60.
go back to reference Liu W, Deng C, McLaughlin CR, Fagerholm P, Lagali NS, Heyne B, Scaiano JC, Watsky MA, Kato Y, Munger R, Shinozaki N, Li F, Griffith M (2009) Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials 30(8):1551–1559CrossRef Liu W, Deng C, McLaughlin CR, Fagerholm P, Lagali NS, Heyne B, Scaiano JC, Watsky MA, Kato Y, Munger R, Shinozaki N, Li F, Griffith M (2009) Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials 30(8):1551–1559CrossRef
61.
go back to reference Liu W, Merrett K, Griffith M, Fagerholm P, Dravida S, Heyne B, Scaiano JC, Watsky MA, Shinozaki N, Lagali N, Munger R, Li F (2008) Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials 29(9):1147–1158CrossRef Liu W, Merrett K, Griffith M, Fagerholm P, Dravida S, Heyne B, Scaiano JC, Watsky MA, Shinozaki N, Lagali N, Munger R, Li F (2008) Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials 29(9):1147–1158CrossRef
62.
go back to reference McLaughlin CR, Fagerholm P, Muzakare L, Lagali N, Forrester JV, Kuffova L, Rafat MA, Liu Y, Shinozaki N, Vascotto SG, Munger R, Griffith M (2008) Regeneration of corneal cells and nerves in an implanted collagen corneal substitute. Cornea 27(5):580–589CrossRef McLaughlin CR, Fagerholm P, Muzakare L, Lagali N, Forrester JV, Kuffova L, Rafat MA, Liu Y, Shinozaki N, Vascotto SG, Munger R, Griffith M (2008) Regeneration of corneal cells and nerves in an implanted collagen corneal substitute. Cornea 27(5):580–589CrossRef
63.
go back to reference Jain A, Betancur M, Patel GD, Valmikinathan CM, Mukhatyar VJ, Vakharia A, Pai SB, Brahma B, MacDonald TJ, Bellamkonda RV (2014) Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibers. Nat Mater 13(3):308–316CrossRef Jain A, Betancur M, Patel GD, Valmikinathan CM, Mukhatyar VJ, Vakharia A, Pai SB, Brahma B, MacDonald TJ, Bellamkonda RV (2014) Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibers. Nat Mater 13(3):308–316CrossRef
64.
go back to reference Rao SS, Dejesus J, Short AR, Otero JJ, Sarkar A, Winter JO (2013) Glioblastoma behaviors in three-dimensional collagen-hyaluronan composite hydrogels. ACS Appl Mater Interfaces 5(19):9276–9284CrossRef Rao SS, Dejesus J, Short AR, Otero JJ, Sarkar A, Winter JO (2013) Glioblastoma behaviors in three-dimensional collagen-hyaluronan composite hydrogels. ACS Appl Mater Interfaces 5(19):9276–9284CrossRef
65.
go back to reference Lungu A, Albu MG, Stancu IC, Florea NM, Vasile E, Iovu H (2013) Superporous collagen-sericin scaffolds. J Appl Polym Sci 127(3):2269–2279CrossRef Lungu A, Albu MG, Stancu IC, Florea NM, Vasile E, Iovu H (2013) Superporous collagen-sericin scaffolds. J Appl Polym Sci 127(3):2269–2279CrossRef
66.
go back to reference Mitran V, Albu MG, Vasile E, Cimpean A, Costache M (2015) Dose-related effects of sericin on preadipocyte behavior within collagen/sericin hybrid scaffolds. Prog Nat Sci Mater Int 25(2):122–130CrossRef Mitran V, Albu MG, Vasile E, Cimpean A, Costache M (2015) Dose-related effects of sericin on preadipocyte behavior within collagen/sericin hybrid scaffolds. Prog Nat Sci Mater Int 25(2):122–130CrossRef
67.
go back to reference Dinescu S, Galateanu B, Albu M, Cimpean A, Dinischiotu A, Costache M (2013) Sericin enhances the bioperformance of collagen-based matrices preseeded with hADSCs. Int J Mol Sci 14(1):1870–1889CrossRef Dinescu S, Galateanu B, Albu M, Cimpean A, Dinischiotu A, Costache M (2013) Sericin enhances the bioperformance of collagen-based matrices preseeded with hADSCs. Int J Mol Sci 14(1):1870–1889CrossRef
68.
go back to reference Tsubouchi K, Igarashi Y, Takasu Y, Yamada H (2005) Sericin enhances attachment of cultured human skin fibroblasts. Biosci Biotechnol Biochem 69:403–405CrossRef Tsubouchi K, Igarashi Y, Takasu Y, Yamada H (2005) Sericin enhances attachment of cultured human skin fibroblasts. Biosci Biotechnol Biochem 69:403–405CrossRef
69.
go back to reference Aramwit P, Kanokpanont S, Nakpheng T, Srichana T (2010) The effects of sericin from various extraction methods on cell viability and collagen production. Int J Mol Sci 11:2200–2211CrossRef Aramwit P, Kanokpanont S, Nakpheng T, Srichana T (2010) The effects of sericin from various extraction methods on cell viability and collagen production. Int J Mol Sci 11:2200–2211CrossRef
70.
go back to reference Dinescu S, Gălățeanu B, Albu M, Lungu A, Radu E, Hermenean A, Costache M (2013) Biocompatibility assessment of novel collagen-sericin scaffolds improved with hyaluronic acid and chondroitin sulfate for cartilage regeneration. Biomed Res Int 2013(111):article ID 598056 Dinescu S, Gălățeanu B, Albu M, Lungu A, Radu E, Hermenean A, Costache M (2013) Biocompatibility assessment of novel collagen-sericin scaffolds improved with hyaluronic acid and chondroitin sulfate for cartilage regeneration. Biomed Res Int 2013(111):article ID 598056
71.
go back to reference Kaya DA, Albu MG, Vuluga Z, Duran N, Albu L, Mert A. Collagen biomaterials with zeolite and essential oils for treatment of skin infections and method for their preparation. National Patent Application, OSIM no A 01269/29.11.2011 Kaya DA, Albu MG, Vuluga Z, Duran N, Albu L, Mert A. Collagen biomaterials with zeolite and essential oils for treatment of skin infections and method for their preparation. National Patent Application, OSIM no A 01269/29.11.2011
72.
go back to reference Houdek MT, Wyles CC, Stalboerger PG, Terzic A, Behfar A, Moran SL (2016) Collagen and fractionated platelet-rich plasma scaffold for dermal regeneration. Plast Reconstr Surg 137(5):1498–1506CrossRef Houdek MT, Wyles CC, Stalboerger PG, Terzic A, Behfar A, Moran SL (2016) Collagen and fractionated platelet-rich plasma scaffold for dermal regeneration. Plast Reconstr Surg 137(5):1498–1506CrossRef
Metadata
Title
Collagen-Based Hydrogels and Their Applications for Tissue Engineering and Regenerative Medicine
Authors
Sorina Dinescu
Madalina Albu Kaya
Leona Chitoiu
Simona Ignat
Durmus Alpaslan Kaya
Marieta Costache
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-77830-3_54

Premium Partners