Skip to main content
Top
Published in: Engineering with Computers 4/2020

05-06-2019 | Original Article

Combination of finite difference method and meshless method based on radial basis functions to solve fractional stochastic advection–diffusion equations

Authors: Farshid Mirzaee, Nasrin Samadyar

Published in: Engineering with Computers | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present article develops a semi-discrete numerical scheme to solve the time-fractional stochastic advection–diffusion equations. This method, which is based on finite difference scheme and radial basis functions (RBFs) interpolation, is applied to convert the solution of time-fractional stochastic advection–diffusion equations to the solution of a linear system of algebraic equations. The mechanism of this method is such that time-fractional stochastic advection–diffusion equation is first transformed into elliptic stochastic differential equations by using finite difference scheme. Then meshfree method based on RBFs has been used to approximate the resulting equation. In other words, the approximate solution of time-fractional stochastic advection–diffusion equation is achieved with discrete the domain in the t-direction by finite difference method and approximating the unknown function in the x-direction by generalized inverse multiquadrics RBFs. In this method, the noise terms are directly simulated at the collocation points in each time step and it is the most important advantage of the suggested approach. Stability and convergence of the scheme are established. Finally, some test problems are included to confirm the accuracy and efficiency of the new approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dehghan M, Shokri A (2009) A numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J Comput Appl Math 230(2):400–410MathSciNetCrossRef Dehghan M, Shokri A (2009) A numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J Comput Appl Math 230(2):400–410MathSciNetCrossRef
2.
go back to reference Gu Y, Zhuang P, Liu F (2010) An advanced implicit meshless approach for the nonlinear anomalous subdiffusion equation. Comput Modeling Eng Sci 56(3):303–334MathSciNetMATH Gu Y, Zhuang P, Liu F (2010) An advanced implicit meshless approach for the nonlinear anomalous subdiffusion equation. Comput Modeling Eng Sci 56(3):303–334MathSciNetMATH
3.
go back to reference Saadatmandi A, Dehghan M, Azizi MR (2012) The Sinc–Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients. Commun Nonlinear Sci Numer Simul 17(11):4125–4136MathSciNetCrossRef Saadatmandi A, Dehghan M, Azizi MR (2012) The Sinc–Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients. Commun Nonlinear Sci Numer Simul 17(11):4125–4136MathSciNetCrossRef
4.
go back to reference Meerschaert MM, Tadjeran C (2006) Finite difference approximations for two-sided space-fractional partial differential equations. Appl Numer Math 56(1):80–90MathSciNetCrossRef Meerschaert MM, Tadjeran C (2006) Finite difference approximations for two-sided space-fractional partial differential equations. Appl Numer Math 56(1):80–90MathSciNetCrossRef
5.
go back to reference Bildik N, Konuralp A (2006) The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations. Int J Nonlinear Sci Numer Simul 7(1):65–70MathSciNetCrossRef Bildik N, Konuralp A (2006) The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations. Int J Nonlinear Sci Numer Simul 7(1):65–70MathSciNetCrossRef
6.
go back to reference Al-Khaled K (2015) Numerical solution of time-fractional partial differential equations using Sumudu decomposition method. Rom J Phys 60(1–2):99–110 Al-Khaled K (2015) Numerical solution of time-fractional partial differential equations using Sumudu decomposition method. Rom J Phys 60(1–2):99–110
7.
go back to reference Wang L, Ma Y, Meng Z (2014) Haar wavelet method for solving fractional partial differential equations numerically. Appl Math Comput 227:66–76MathSciNetCrossRef Wang L, Ma Y, Meng Z (2014) Haar wavelet method for solving fractional partial differential equations numerically. Appl Math Comput 227:66–76MathSciNetCrossRef
8.
go back to reference Townsend A, Olver S (2015) The automatic solution of partial differential equations using a global spectral method. J Comput Phys 299:106–123MathSciNetCrossRef Townsend A, Olver S (2015) The automatic solution of partial differential equations using a global spectral method. J Comput Phys 299:106–123MathSciNetCrossRef
9.
go back to reference Bhrawy AH (2016) A new spectral algorithm for a time-space fractional partial differential equations with sub diffusion and super diffusion. Proc Rom Acad Ser A 17(1):39–47MathSciNet Bhrawy AH (2016) A new spectral algorithm for a time-space fractional partial differential equations with sub diffusion and super diffusion. Proc Rom Acad Ser A 17(1):39–47MathSciNet
10.
go back to reference Dehghan M, Manafian J, Saadatmandi A (2010) Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer Methods Part Differ Equ 26(2):448–479MathSciNetCrossRef Dehghan M, Manafian J, Saadatmandi A (2010) Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer Methods Part Differ Equ 26(2):448–479MathSciNetCrossRef
11.
go back to reference Dehghan M, Shirzadi M (2015) Meshless simulation of stochastic advection–diffusion equations based on radial basis functions. Eng Anal Bound Elem 53:18–26MathSciNetCrossRef Dehghan M, Shirzadi M (2015) Meshless simulation of stochastic advection–diffusion equations based on radial basis functions. Eng Anal Bound Elem 53:18–26MathSciNetCrossRef
12.
go back to reference Dehghan M (2004) Weighted finite difference techniques for the one-dimensional advection–diffusion equation. Appl Math Comput 147(2):307–319MathSciNetCrossRef Dehghan M (2004) Weighted finite difference techniques for the one-dimensional advection–diffusion equation. Appl Math Comput 147(2):307–319MathSciNetCrossRef
13.
go back to reference Halpern L, Hubert F (2014) A finite volume Ventcell-Schwarz algorithm for advection–diffusion equations. SIAM J Numer Anal 52(3):1269–1291MathSciNetCrossRef Halpern L, Hubert F (2014) A finite volume Ventcell-Schwarz algorithm for advection–diffusion equations. SIAM J Numer Anal 52(3):1269–1291MathSciNetCrossRef
14.
go back to reference Wang K, Wang H (2011) A fast characteristic finite difference method for fractional advection–diffusion equations. Adv Water Resour 34(7):810–816CrossRef Wang K, Wang H (2011) A fast characteristic finite difference method for fractional advection–diffusion equations. Adv Water Resour 34(7):810–816CrossRef
15.
go back to reference Bhrawy AH, Baleanu D (2013) A spectral Legendre–Gauss–Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients. Rep Math Phys 72(2):219–233MathSciNetCrossRef Bhrawy AH, Baleanu D (2013) A spectral Legendre–Gauss–Lobatto collocation method for a space-fractional advection diffusion equations with variable coefficients. Rep Math Phys 72(2):219–233MathSciNetCrossRef
16.
go back to reference Zhuang P, Gu Y, Liu F, Turner I, Yarlagadda PKDV (2011) Time-dependent fractional advection–diffusion equations by an implicit MLS meshless method. Int J Numer Methods Eng 88(13):1346–1362MathSciNetCrossRef Zhuang P, Gu Y, Liu F, Turner I, Yarlagadda PKDV (2011) Time-dependent fractional advection–diffusion equations by an implicit MLS meshless method. Int J Numer Methods Eng 88(13):1346–1362MathSciNetCrossRef
17.
go back to reference Allen EJ, Novosel SJ, Zhang Z (1998) Finite element and difference approximation of some linear stochastic partial differential equations. Stoch Int J Prob Stoch Proc 64(1–2):117–142MathSciNetMATH Allen EJ, Novosel SJ, Zhang Z (1998) Finite element and difference approximation of some linear stochastic partial differential equations. Stoch Int J Prob Stoch Proc 64(1–2):117–142MathSciNetMATH
18.
go back to reference Cao Y, Yang H, Yin L (2007) Finite element methods for semilinear elliptic stochastic partial differential equations. Numer Math 106(2):181–198MathSciNetCrossRef Cao Y, Yang H, Yin L (2007) Finite element methods for semilinear elliptic stochastic partial differential equations. Numer Math 106(2):181–198MathSciNetCrossRef
19.
go back to reference Hou TY, Luo W, Rozovski B, Zhou HM (2006) Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics. J Comput Phys 216:687–706MathSciNetCrossRef Hou TY, Luo W, Rozovski B, Zhou HM (2006) Wiener Chaos expansions and numerical solutions of randomly forced equations of fluid mechanics. J Comput Phys 216:687–706MathSciNetCrossRef
20.
go back to reference Rößler A, Seaïd M, Zahri M (2008) Method of lines for stochastic boundary-value problems with additive noise. Appl Math Comput 199(1):301–314MathSciNetCrossRef Rößler A, Seaïd M, Zahri M (2008) Method of lines for stochastic boundary-value problems with additive noise. Appl Math Comput 199(1):301–314MathSciNetCrossRef
21.
go back to reference Kamrani M, Hosseini SM (2012) Spectral collocation method for stochastic Burgers equation driven by additive noise. Math Comput Simul 82(9):1630–1644MathSciNetCrossRef Kamrani M, Hosseini SM (2012) Spectral collocation method for stochastic Burgers equation driven by additive noise. Math Comput Simul 82(9):1630–1644MathSciNetCrossRef
22.
go back to reference Dehghan M, Shirzadi M (2015) Numerical solution of stochastic elliptic partial differential equations using the meshless method of radial basis functions. Eng Anal Bound Elem 50:291–303MathSciNetCrossRef Dehghan M, Shirzadi M (2015) Numerical solution of stochastic elliptic partial differential equations using the meshless method of radial basis functions. Eng Anal Bound Elem 50:291–303MathSciNetCrossRef
23.
go back to reference Dehghan M, Shirzadi M (2015) The modified dual reciprocity boundary elements method and its application for solving stochastic partial differential equations. Eng Anal Bound Elem 58:99–111MathSciNetCrossRef Dehghan M, Shirzadi M (2015) The modified dual reciprocity boundary elements method and its application for solving stochastic partial differential equations. Eng Anal Bound Elem 58:99–111MathSciNetCrossRef
24.
go back to reference Jentzen A, Kloeden P (2011) Taylor approximations for stochastic partial differential equations. SIAM, PhiladelphiaCrossRef Jentzen A, Kloeden P (2011) Taylor approximations for stochastic partial differential equations. SIAM, PhiladelphiaCrossRef
25.
go back to reference Mirzaee F, Samadyar N (2018) Using radial basis functions to solve two dimensional linear stochastic integral equations on non-rectangular domains. Eng Anal Bound Elem 92:180–195MathSciNetCrossRef Mirzaee F, Samadyar N (2018) Using radial basis functions to solve two dimensional linear stochastic integral equations on non-rectangular domains. Eng Anal Bound Elem 92:180–195MathSciNetCrossRef
26.
go back to reference Samadyar N, Mirzaee F (2019) Numerical solution of two-dimensional weakly singular stochastic integral equations on non-rectangular domains via radial basis functions. Eng Anal Bound Elem 101:27–36MathSciNetCrossRef Samadyar N, Mirzaee F (2019) Numerical solution of two-dimensional weakly singular stochastic integral equations on non-rectangular domains via radial basis functions. Eng Anal Bound Elem 101:27–36MathSciNetCrossRef
27.
go back to reference Shirzadi A, Sladek V, Sladek J (2013) A local integral equation formulation to solve coupled nonlinear reaction-diffusion equations by using moving least square approximation. Eng Anal Bound Elem 37(1):8–14MathSciNetCrossRef Shirzadi A, Sladek V, Sladek J (2013) A local integral equation formulation to solve coupled nonlinear reaction-diffusion equations by using moving least square approximation. Eng Anal Bound Elem 37(1):8–14MathSciNetCrossRef
28.
go back to reference Dehghan M, Mirzaei D (2008) The meshless local Petrov–Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrdinger equation. Eng Anal Bound Elem 32(9):747–756CrossRef Dehghan M, Mirzaei D (2008) The meshless local Petrov–Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrdinger equation. Eng Anal Bound Elem 32(9):747–756CrossRef
29.
go back to reference Ballestra LV, Pacelli G (2012) A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications. Eng Anal Bound Elem 36(11):1546–1554MathSciNetCrossRef Ballestra LV, Pacelli G (2012) A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications. Eng Anal Bound Elem 36(11):1546–1554MathSciNetCrossRef
30.
go back to reference Ballestra LV, Pacelli G (2011) Computing the survival probability density function in jump-diffusion models: a new approach based on radial basis functions. Eng Anal Bound Elem 35(9):1075–1084MathSciNetCrossRef Ballestra LV, Pacelli G (2011) Computing the survival probability density function in jump-diffusion models: a new approach based on radial basis functions. Eng Anal Bound Elem 35(9):1075–1084MathSciNetCrossRef
31.
go back to reference Cialenco I, Fasshauer GE, Ye Q (2012) Approximation of stochastic partial differential equations by a kernel-based collocation method. Int J Comput Math 89(18):2543–2561MathSciNetCrossRef Cialenco I, Fasshauer GE, Ye Q (2012) Approximation of stochastic partial differential equations by a kernel-based collocation method. Int J Comput Math 89(18):2543–2561MathSciNetCrossRef
32.
go back to reference Fasshauer GE, Ye Q (2013) Kernel-based collocation methods versus Galerkin finite element methods for approximating elliptic stochastic partial differential equations. Meshfree Methods Partial Differ Equ VI Lect Notes Comput Science Eng 89:155–170MathSciNetMATH Fasshauer GE, Ye Q (2013) Kernel-based collocation methods versus Galerkin finite element methods for approximating elliptic stochastic partial differential equations. Meshfree Methods Partial Differ Equ VI Lect Notes Comput Science Eng 89:155–170MathSciNetMATH
33.
go back to reference Wan X, Xiu D, Karniadakis GE (2004) Stochastic solutions for the two-dimensional advection–diffusion equation. SIAM J Sci Comput 26:578–590MathSciNetCrossRef Wan X, Xiu D, Karniadakis GE (2004) Stochastic solutions for the two-dimensional advection–diffusion equation. SIAM J Sci Comput 26:578–590MathSciNetCrossRef
34.
go back to reference Mirzaee F, Samadyar N (2017) Application of orthonormal Bernstein polynomials to construct a efficient scheme for solving fractional stochastic integro-differential equation. Optik Int J Light Electron Opt 132:262–273CrossRef Mirzaee F, Samadyar N (2017) Application of orthonormal Bernstein polynomials to construct a efficient scheme for solving fractional stochastic integro-differential equation. Optik Int J Light Electron Opt 132:262–273CrossRef
35.
go back to reference Lin Y, Xu C (2007) Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys 225:1533–1552MathSciNetCrossRef Lin Y, Xu C (2007) Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys 225:1533–1552MathSciNetCrossRef
Metadata
Title
Combination of finite difference method and meshless method based on radial basis functions to solve fractional stochastic advection–diffusion equations
Authors
Farshid Mirzaee
Nasrin Samadyar
Publication date
05-06-2019
Publisher
Springer London
Published in
Engineering with Computers / Issue 4/2020
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-019-00789-y

Other articles of this Issue 4/2020

Engineering with Computers 4/2020 Go to the issue