Skip to main content
Top
Published in: Neural Computing and Applications 10/2019

23-03-2018 | Original Article

Combined effects of Brownian motion and thermophoresis parameters on three-dimensional (3D) Casson nanofluid flow across the porous layers slendering sheet in a suspension of graphene nanoparticles

Authors: P. Durgaprasad, S. V. K. Varma, Mohammad Mainul Hoque, C. S. K. Raju

Published in: Neural Computing and Applications | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present study emphases on the three-dimensional (3D) Casson nanofluid flow across a slendering sheet in porous layers by considering the thermophoresis and Brownian motion effect. The proposed mathematical model has a tendency to characterise the effect of the non-uniform heat source/sink. In the present simulation, the graphene–water-based nanoparticles have been used at two different temperatures namely 10 and 50 °C. The nonlinear ordinary differential equations are solved using the Runge–Kutta Feldberg integration method. The characteristics of velocity, temperature and concentration boundary layers in the presence of graphene–water nanoparticles are presented for different physical parameters such as heat source/sink parameter, thermophoresis parameter, Brownian motion parameter, Casson fluid parameter, porosity parameter, volume fraction and velocity power index parameter. Moreover, the friction factor coefficients, Nusselt number and Sherwood number are also estimated and discussed for aforesaid physical parameters. It is found that there is a significant increase in the thermal and concentration boundary layer thickness when the strength of the thermophoresis parameter is increased. In contrast, thermal boundary layer increases with the rise in the Brownian motion parameter, while the reverse trend holds true for concentration field. In addition, the rate of heat and mass transfer rate are higher in case of graphene–water nanoparticle at 50 °C compared to 10 °C temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lee SW, Lee SS, Yang EH (2009) A study on field emission characteristics of planar graphene layers obtained from a highly oriented pyrolyzed graphite bloc. Nanoscale Res Lett 4:1218–1221CrossRef Lee SW, Lee SS, Yang EH (2009) A study on field emission characteristics of planar graphene layers obtained from a highly oriented pyrolyzed graphite bloc. Nanoscale Res Lett 4:1218–1221CrossRef
2.
go back to reference Malesevic A, Kemps R, Vanhulsel A, Chowdhury PM, Alexander V, Chris VH (2008) Field emission from vertically aligned few-layer graphene. J Appl Phys 104:084301CrossRef Malesevic A, Kemps R, Vanhulsel A, Chowdhury PM, Alexander V, Chris VH (2008) Field emission from vertically aligned few-layer graphene. J Appl Phys 104:084301CrossRef
3.
go back to reference Mao LF (2011) A theoretical analysis of field emission from graphene nanoribbons. Carbon 49(8):2709–2714CrossRef Mao LF (2011) A theoretical analysis of field emission from graphene nanoribbons. Carbon 49(8):2709–2714CrossRef
4.
go back to reference Haque AKMM, Kwon S, Kim J, Noh J, Huh S, Chung H, Jeong H (2015) An experimental study on thermal characteristics of nanofluid with graphene and multi-wall carbon nanotubes. J Cent South Univ 22:3202–3210CrossRef Haque AKMM, Kwon S, Kim J, Noh J, Huh S, Chung H, Jeong H (2015) An experimental study on thermal characteristics of nanofluid with graphene and multi-wall carbon nanotubes. J Cent South Univ 22:3202–3210CrossRef
5.
go back to reference Baby TT, Prabhu SR (2012) Experimental study on the field emission properties of metal oxide nanoparticle–decorated graphene. J Appl Phys 111:034311CrossRef Baby TT, Prabhu SR (2012) Experimental study on the field emission properties of metal oxide nanoparticle–decorated graphene. J Appl Phys 111:034311CrossRef
6.
go back to reference Bhargava R, Goyal M (2014) MHD non-Newtonian nanofluid flow over a permeable stretching sheet with heat generation and velocity slip. Int J Math Comput Nat Phys Eng 8(6):910–916 Bhargava R, Goyal M (2014) MHD non-Newtonian nanofluid flow over a permeable stretching sheet with heat generation and velocity slip. Int J Math Comput Nat Phys Eng 8(6):910–916
7.
go back to reference Cortell R (2014) MHD (magneto-hydrodynamic) flow and radiative nonlinear heat transfer of a viscoelastic fluid over a stretching sheet with heat generation/absorption. Energy 74:896–905CrossRef Cortell R (2014) MHD (magneto-hydrodynamic) flow and radiative nonlinear heat transfer of a viscoelastic fluid over a stretching sheet with heat generation/absorption. Energy 74:896–905CrossRef
8.
go back to reference Raju CSK, Sandeep N, Sugunamma V, Babu MJ, Reddy JVR (2016) Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface. Eng Sci Technol Int J 19(1):45–52CrossRef Raju CSK, Sandeep N, Sugunamma V, Babu MJ, Reddy JVR (2016) Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface. Eng Sci Technol Int J 19(1):45–52CrossRef
9.
go back to reference Hayat T, Imtiaz M, Alsaedi A, Kutbi MA (2015) MHD three dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation. J Magn Magn Mater 396:31–37CrossRef Hayat T, Imtiaz M, Alsaedi A, Kutbi MA (2015) MHD three dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation. J Magn Magn Mater 396:31–37CrossRef
10.
go back to reference Animasaun IL, Raju CSK, Sandeep N (2016) Unequal diffusivities case of homogeneous–heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation. Alex Eng J 55(2):1595–1606CrossRef Animasaun IL, Raju CSK, Sandeep N (2016) Unequal diffusivities case of homogeneous–heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation. Alex Eng J 55(2):1595–1606CrossRef
11.
go back to reference Nelson E (1967) Dynamical theories of Brownian motion, vol 3. Princeton University Press, PrincetonMATH Nelson E (1967) Dynamical theories of Brownian motion, vol 3. Princeton University Press, PrincetonMATH
12.
go back to reference Nadeem S, Haq RU, Akbar NS (2014) MHD three-dimensional boundary layer flow of Casson nanofluid past a linearly stretching sheet with convective boundary condition. IEEE Trans Nanotechnol 13(1):109–115CrossRef Nadeem S, Haq RU, Akbar NS (2014) MHD three-dimensional boundary layer flow of Casson nanofluid past a linearly stretching sheet with convective boundary condition. IEEE Trans Nanotechnol 13(1):109–115CrossRef
13.
go back to reference Raju CSK, Hoque MM, Anika NN, Mamatha SU, Sharma P (2017) Natural convective heat transfer analysis of MHD unsteady Carreau nanofluid over a cone packed with alloy nanoparticles. Powder Technol 317:408–416CrossRef Raju CSK, Hoque MM, Anika NN, Mamatha SU, Sharma P (2017) Natural convective heat transfer analysis of MHD unsteady Carreau nanofluid over a cone packed with alloy nanoparticles. Powder Technol 317:408–416CrossRef
14.
go back to reference Raju CSK, Hoque MM, Sivasankar T (2016) Radiative flow of Casson fluid over a moving wedge filled with gyrotactic microorganisms. Adv Powder Technol 28(2):575–583CrossRef Raju CSK, Hoque MM, Sivasankar T (2016) Radiative flow of Casson fluid over a moving wedge filled with gyrotactic microorganisms. Adv Powder Technol 28(2):575–583CrossRef
15.
go back to reference Raju CSK, Sandeep N (2016) Unsteady three-dimensional flow of Casson–Carreau fluids past a stretching surface. Alex Eng J 55(2):1115–1126CrossRef Raju CSK, Sandeep N (2016) Unsteady three-dimensional flow of Casson–Carreau fluids past a stretching surface. Alex Eng J 55(2):1115–1126CrossRef
16.
go back to reference Beg OA, Hoque MM, Wahiduzzaman M, Alam MM, Ferdows M (2014) Spectral numerical simulation of mageneto-physiological laminar Dean flow. J Mech Med Biol 14(4):1450047CrossRef Beg OA, Hoque MM, Wahiduzzaman M, Alam MM, Ferdows M (2014) Spectral numerical simulation of mageneto-physiological laminar Dean flow. J Mech Med Biol 14(4):1450047CrossRef
17.
go back to reference Hoque MM, Alam MM (2013) Effects of Dean number and curvature on fluid flow through a curved pipe with magnetic field. Procedia Eng 56:243–253CrossRef Hoque MM, Alam MM (2013) Effects of Dean number and curvature on fluid flow through a curved pipe with magnetic field. Procedia Eng 56:243–253CrossRef
18.
go back to reference Hoque MM, Alam MM, Ferdows M, Beg OA (2013) Numerical simulation of Dean number and curvature effects on magneto-bio-fluid flow through a curved conduit. Proc Inst Mech Eng H J Eng Med 227(11):1155–1170CrossRef Hoque MM, Alam MM, Ferdows M, Beg OA (2013) Numerical simulation of Dean number and curvature effects on magneto-bio-fluid flow through a curved conduit. Proc Inst Mech Eng H J Eng Med 227(11):1155–1170CrossRef
19.
go back to reference Hoque MM, Anika NN, Alam MM (2013) Numerical analysis of magnetohydrodynamics flow in a curved duct. Int J Sci Eng Res 4(7):607–617 Hoque MM, Anika NN, Alam MM (2013) Numerical analysis of magnetohydrodynamics flow in a curved duct. Int J Sci Eng Res 4(7):607–617
20.
go back to reference Hoque MM, Alam MM (2015) A numerical study of MHD laminar flow in a rotating curved pipe with circular cross section. Open J Fluid Dyn 5:121–127CrossRef Hoque MM, Alam MM (2015) A numerical study of MHD laminar flow in a rotating curved pipe with circular cross section. Open J Fluid Dyn 5:121–127CrossRef
21.
go back to reference Hoque MM, Anika NN, Alam MM (2013) Magnetic effects on direct numerical solution of fluid flow through a curved pipe with circular cross section. Eur J Sci Res 103(3):343–361 Hoque MM, Anika NN, Alam MM (2013) Magnetic effects on direct numerical solution of fluid flow through a curved pipe with circular cross section. Eur J Sci Res 103(3):343–361
22.
go back to reference Reddy GJ, Kethireddy B, Kumar M, Hoque MM (2018) A molecular dynamics study on transient non-Newtonian MHD Casson fluid flow dispersion over a radiative vertical cylinder with entropy heat generation. J Mol Liq 252:245–262CrossRef Reddy GJ, Kethireddy B, Kumar M, Hoque MM (2018) A molecular dynamics study on transient non-Newtonian MHD Casson fluid flow dispersion over a radiative vertical cylinder with entropy heat generation. J Mol Liq 252:245–262CrossRef
23.
go back to reference Sulochana C, Ashwinkumar GP, Sandeep N (2016) Similarity solution of 3D Casson nanofluid flow over a stretching sheet with convective boundary conditions. J Niger Math Soc 35:128–141MathSciNetMATHCrossRef Sulochana C, Ashwinkumar GP, Sandeep N (2016) Similarity solution of 3D Casson nanofluid flow over a stretching sheet with convective boundary conditions. J Niger Math Soc 35:128–141MathSciNetMATHCrossRef
24.
go back to reference Babu MJ, Sandeep N (2016) 3D MHD slip flow of a nanofluid over a slendering stretching sheet with thermophoresis and Brownian motion effects. J Mol Liq 222:1003–1009CrossRef Babu MJ, Sandeep N (2016) 3D MHD slip flow of a nanofluid over a slendering stretching sheet with thermophoresis and Brownian motion effects. J Mol Liq 222:1003–1009CrossRef
25.
go back to reference Sandeep N, Koriko OK, Animasaun IL (2016) Modified kinematic viscosity model for 3D Casson fluid flow within boundary layer formed on a surface at absolute zero. J Mol Liq 221:1197–1206CrossRef Sandeep N, Koriko OK, Animasaun IL (2016) Modified kinematic viscosity model for 3D Casson fluid flow within boundary layer formed on a surface at absolute zero. J Mol Liq 221:1197–1206CrossRef
26.
go back to reference Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. Paper presented at the international mechanical engineering congress and exposition, San Francisco, USA Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. Paper presented at the international mechanical engineering congress and exposition, San Francisco, USA
27.
go back to reference Buongiorno J (2005) Convective transport in nanofluids. J Heat Transf 128(3):240–250CrossRef Buongiorno J (2005) Convective transport in nanofluids. J Heat Transf 128(3):240–250CrossRef
28.
go back to reference Gireesha BJ, Mahanthesh B, Rashidi MM (2015) MHD boundary layer heat and mass transfer of a chemically reacting Casson fluid over a permeable stretching surface with non-uniform heat source/sink. Int J Ind Math 7:247–260 Gireesha BJ, Mahanthesh B, Rashidi MM (2015) MHD boundary layer heat and mass transfer of a chemically reacting Casson fluid over a permeable stretching surface with non-uniform heat source/sink. Int J Ind Math 7:247–260
29.
go back to reference Sheikholeslami M, Ganji DD (2015) Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput Methods Appl Mech Eng 283:651–663MathSciNetMATHCrossRef Sheikholeslami M, Ganji DD (2015) Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput Methods Appl Mech Eng 283:651–663MathSciNetMATHCrossRef
30.
go back to reference Malvandi A, Heysiattalab S, Ganji DD (2016) Thermophoresis and Brownian motion effects on heat transfer enhancement at film boiling of nanofluids over a vertical cylinder. J Mol Liq 216:503–509CrossRef Malvandi A, Heysiattalab S, Ganji DD (2016) Thermophoresis and Brownian motion effects on heat transfer enhancement at film boiling of nanofluids over a vertical cylinder. J Mol Liq 216:503–509CrossRef
31.
go back to reference Fani B, Kalteh M, Abbassi A (2015) Investigating the effect of Brownian motion and viscous dissipation on the nanofluid heat transfer in a trapezoidal micro channel heat sink. Adv Powder Technol 26:83–90CrossRef Fani B, Kalteh M, Abbassi A (2015) Investigating the effect of Brownian motion and viscous dissipation on the nanofluid heat transfer in a trapezoidal micro channel heat sink. Adv Powder Technol 26:83–90CrossRef
32.
go back to reference Angayarkanni SA, Philip J (2015) Review on thermal properties of nanofluids: recent developments. Adv Colloid Interface Sci 225:146–176CrossRef Angayarkanni SA, Philip J (2015) Review on thermal properties of nanofluids: recent developments. Adv Colloid Interface Sci 225:146–176CrossRef
33.
go back to reference Khan WA, Aziz A (2011) Natural convection flow of a nanofluid over a vertical plate with uniform surface heat flux. Int J Therm Sci 50(7):1207–1214CrossRef Khan WA, Aziz A (2011) Natural convection flow of a nanofluid over a vertical plate with uniform surface heat flux. Int J Therm Sci 50(7):1207–1214CrossRef
34.
go back to reference Kim J, Kang YT, Choi CK (2004) Analysis of convective instability and heat transfer characteristics of nanofluids. Phys Fluids 16:2395–2401MATHCrossRef Kim J, Kang YT, Choi CK (2004) Analysis of convective instability and heat transfer characteristics of nanofluids. Phys Fluids 16:2395–2401MATHCrossRef
35.
go back to reference Sheikholeslami M (2017) Numerical simulation of magnetic nanofluid natural convection in porous media. Phys Lett A 381(5):494–503CrossRef Sheikholeslami M (2017) Numerical simulation of magnetic nanofluid natural convection in porous media. Phys Lett A 381(5):494–503CrossRef
36.
go back to reference Sheikholeslami M (2017) Influence of Lorentz forces on nanofluid flow in a porous cylinder considering Darcy model. J Mol Liq 225:903–912CrossRef Sheikholeslami M (2017) Influence of Lorentz forces on nanofluid flow in a porous cylinder considering Darcy model. J Mol Liq 225:903–912CrossRef
37.
go back to reference Sheikholeslami M (2017) Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. J Mol Liq 229:137–147CrossRef Sheikholeslami M (2017) Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. J Mol Liq 229:137–147CrossRef
38.
go back to reference Sheikholeslami M (2017) Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann method. J Mol Liq 231:555–565CrossRef Sheikholeslami M (2017) Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann method. J Mol Liq 231:555–565CrossRef
39.
go back to reference Sheikholeslami M (2017) Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann method. J Mol Liq 234:364–374CrossRef Sheikholeslami M (2017) Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann method. J Mol Liq 234:364–374CrossRef
40.
go back to reference Sheikholeslami M, Rokni HB (2017) Nanofluid two phase model analysis in existence of induced magnetic field. Int J Heat Mass Transf 107:288–299CrossRef Sheikholeslami M, Rokni HB (2017) Nanofluid two phase model analysis in existence of induced magnetic field. Int J Heat Mass Transf 107:288–299CrossRef
41.
go back to reference Sheikholeslamia M, Bhattib MM (2017) Active method for nanofluid heat transfer enhancement by means of EHD. Int J Heat Mass Transf 109:115–122CrossRef Sheikholeslamia M, Bhattib MM (2017) Active method for nanofluid heat transfer enhancement by means of EHD. Int J Heat Mass Transf 109:115–122CrossRef
42.
go back to reference Sheikholeslamia M, Hayat T, Alsaedic A (2017) Numerical study for external magnetic source influence on water based nanofluid convective heat transfer. Int J Heat Mass Transf 106:745–755CrossRef Sheikholeslamia M, Hayat T, Alsaedic A (2017) Numerical study for external magnetic source influence on water based nanofluid convective heat transfer. Int J Heat Mass Transf 106:745–755CrossRef
43.
go back to reference Sheikholeslamia M, Shehzadb SA (2017) Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition. Int J Heat Mass Transf 106:1261–1269CrossRef Sheikholeslamia M, Shehzadb SA (2017) Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition. Int J Heat Mass Transf 106:1261–1269CrossRef
44.
go back to reference Sheikholeslamia M, Shehzadb SA (2017) Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity. Int J Heat Mass Transf 109:82–92CrossRef Sheikholeslamia M, Shehzadb SA (2017) Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity. Int J Heat Mass Transf 109:82–92CrossRef
45.
go back to reference Khader M, Megahed AM (2003) Numerical solution for boundary layer flow due to a nonlinearly stretching sheet with variable thickness and slip velocity. Eur Phys J Plus 128:100–108CrossRef Khader M, Megahed AM (2003) Numerical solution for boundary layer flow due to a nonlinearly stretching sheet with variable thickness and slip velocity. Eur Phys J Plus 128:100–108CrossRef
46.
go back to reference Devi SPA, Prakash M (2016) Slip flow effects over hydromagnetic forced convective flow over a slendering stretching sheet. J Appl Fluid Mech 9(2):683–692CrossRef Devi SPA, Prakash M (2016) Slip flow effects over hydromagnetic forced convective flow over a slendering stretching sheet. J Appl Fluid Mech 9(2):683–692CrossRef
Metadata
Title
Combined effects of Brownian motion and thermophoresis parameters on three-dimensional (3D) Casson nanofluid flow across the porous layers slendering sheet in a suspension of graphene nanoparticles
Authors
P. Durgaprasad
S. V. K. Varma
Mohammad Mainul Hoque
C. S. K. Raju
Publication date
23-03-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 10/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3451-z

Other articles of this Issue 10/2019

Neural Computing and Applications 10/2019 Go to the issue

Premium Partner