Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Neural Processing Letters 5/2021

29-06-2021

Common Spatial Pattern with L21-Norm

Authors: Jingyu Gu, Mengting Wei, Yiyun Guo, Haixian Wang

Published in: Neural Processing Letters | Issue 5/2021

Login to get access
share
SHARE

Abstract

As one of the most commonly used algorithms in the field of feature extraction, common spatial pattern (CSP) has a good effect on multichannel electroencephalogram (EEG) signal classification, especially for motor imagery-based signals. However, the formulation of the conventional CSP based on the L2-norm is sensitive to outliers. Whereas the L1-norm-based common spatial pattern (CSP-L1) proposed in recent years can seek robust spatial filters to effectively alleviate the impact of outliers, the L1-norm is unable to characterize the geometric structure of the data well. To further improve the robustness of CSP, in this paper, we propose a new extension to CSP called the L21-norm-based common spatial pattern (CSP-L21), which is formulated by using the L21-norm rather than the L2-norm. Moreover, CSP-L21 has the advantages of rotational invariance and geometric structure characterization. We provide a non-greedy iterative algorithm to maximize the objective function of CSP-L21. Experiments on a toy example and three popular data sets of BCI competitions illustrate that the proposed method can efficiently extract discriminative features.
Literature
1.
go back to reference Blankertz B, Tomioka R, Lemm S et al (2008) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag 25(1):41–56 CrossRef Blankertz B, Tomioka R, Lemm S et al (2008) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag 25(1):41–56 CrossRef
2.
go back to reference Chaudhary U, Birbaumer N, Ramos-Murguialday A (2016) Brain-computer interfaces for communication and rehabilitation. Nat Rev Neurol 12(9):513–525 CrossRef Chaudhary U, Birbaumer N, Ramos-Murguialday A (2016) Brain-computer interfaces for communication and rehabilitation. Nat Rev Neurol 12(9):513–525 CrossRef
3.
go back to reference Grosse-Wentrup M, Liefhold C, Gramann K et al (2009) Beamforming in noninvasive brain–computer interfaces. IEEE Trans Biomed Eng 56(4):1209–1219 CrossRef Grosse-Wentrup M, Liefhold C, Gramann K et al (2009) Beamforming in noninvasive brain–computer interfaces. IEEE Trans Biomed Eng 56(4):1209–1219 CrossRef
4.
go back to reference Dornhege G, Blankertz B, Curio G et al (2004) Boosting bit rates in non-invasive EEG single-trial classifications by feature combination and multi-class paradigms. IEEE Trans Biomed Eng 51(6):993–1002 CrossRef Dornhege G, Blankertz B, Curio G et al (2004) Boosting bit rates in non-invasive EEG single-trial classifications by feature combination and multi-class paradigms. IEEE Trans Biomed Eng 51(6):993–1002 CrossRef
5.
go back to reference Wang H, Tang Q, Zheng W (2012) L1-norm-based common spatial patterns. IEEE Trans Biomed Eng 59(3):653–662 CrossRef Wang H, Tang Q, Zheng W (2012) L1-norm-based common spatial patterns. IEEE Trans Biomed Eng 59(3):653–662 CrossRef
6.
go back to reference Fang N, Wang H (2017) Generalization of local temporal correlation common spatial patterns using Lp-norm (0<p<2). In: International Conference on Neural Information Processing, pp 769–777 Fang N, Wang H (2017) Generalization of local temporal correlation common spatial patterns using Lp-norm (0<p<2). In: International Conference on Neural Information Processing, pp 769–777
7.
go back to reference Wang H, Zheng W (2008) Local temporal common spatial patterns for robust single-trial EEG classification. IEEE Trans Neural Syst Rehabil Eng 16(2):131–139 CrossRef Wang H, Zheng W (2008) Local temporal common spatial patterns for robust single-trial EEG classification. IEEE Trans Neural Syst Rehabil Eng 16(2):131–139 CrossRef
8.
go back to reference Ding C, Zhou D, He X et al (2006) R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization. In: International Conference on Machine Learning, pp 281–288 Ding C, Zhou D, He X et al (2006) R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization. In: International Conference on Machine Learning, pp 281–288
9.
go back to reference Yang Y, Shen H, Ma Z et al (2011) L2, 1-norm regularized discriminative feature selection for unsupervised learning. In: International Joint Conference on Artificial Intelligence, pp 1589–1594 Yang Y, Shen H, Ma Z et al (2011) L2, 1-norm regularized discriminative feature selection for unsupervised learning. In: International Joint Conference on Artificial Intelligence, pp 1589–1594
10.
go back to reference Liao S, Gao Q, Yang Z et al (2018) Discriminant analysis via joint Euler transform and ℓ2,1-norm. IEEE Trans Image Process 27(11):5668–5682 MathSciNetCrossRef Liao S, Gao Q, Yang Z et al (2018) Discriminant analysis via joint Euler transform and ℓ2,1-norm. IEEE Trans Image Process 27(11):5668–5682 MathSciNetCrossRef
11.
go back to reference Liu Y, Gao Q, Gao X et al (2018) L2,1-norm discriminant manifold learning. IEEE Access 6:40723–40734 CrossRef Liu Y, Gao Q, Gao X et al (2018) L2,1-norm discriminant manifold learning. IEEE Access 6:40723–40734 CrossRef
12.
go back to reference Nie F, Huang H, Cai X et al (2010) Efficient and robust feature selection via joint l2, 1-norms minimization. In: Proceedings of the Conference on Neural Information Processing Systems, pp 1813–1821 Nie F, Huang H, Cai X et al (2010) Efficient and robust feature selection via joint l2, 1-norms minimization. In: Proceedings of the Conference on Neural Information Processing Systems, pp 1813–1821
13.
go back to reference Luo M, Nie F, Chang X et al (2016) Avoiding optimal mean robust PCA/2DPCA with non-greedy L1-norm maximization. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp 1802–1808 Luo M, Nie F, Chang X et al (2016) Avoiding optimal mean robust PCA/2DPCA with non-greedy L1-norm maximization. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp 1802–1808
14.
go back to reference Blankertz B, Kawanabe M, Tomioka R et al (2008) Invariant common spatial patterns: Alleviating nonstationarities in brain-computer interfacing. In: Proceedings of the Conference on Neural Information Processing Systems, pp 113–120 Blankertz B, Kawanabe M, Tomioka R et al (2008) Invariant common spatial patterns: Alleviating nonstationarities in brain-computer interfacing. In: Proceedings of the Conference on Neural Information Processing Systems, pp 113–120
15.
go back to reference Lotte F, Guan C (2011) Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans Biomed Eng 58(2):355–362 CrossRef Lotte F, Guan C (2011) Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans Biomed Eng 58(2):355–362 CrossRef
16.
go back to reference Kawanabe M, Vidaurre C (2009) Improving BCI performance by modified common spatial patterns with robustly averaged covariance matrices. In: World Congress on Medical Physics and Biomedical Engineering, pp 279–282 Kawanabe M, Vidaurre C (2009) Improving BCI performance by modified common spatial patterns with robustly averaged covariance matrices. In: World Congress on Medical Physics and Biomedical Engineering, pp 279–282
17.
go back to reference Ledoit O, Wolf M (2004) A well-conditioned estimator for large-dimensional covariance matrices. J Multivar Anal 88(2):365–411 MathSciNetCrossRef Ledoit O, Wolf M (2004) A well-conditioned estimator for large-dimensional covariance matrices. J Multivar Anal 88(2):365–411 MathSciNetCrossRef
18.
go back to reference Li X, Wang H (2013) Smooth spatial filter for common spatial patterns. In: International Conference on Neural Information Processing, pp 315–322 Li X, Wang H (2013) Smooth spatial filter for common spatial patterns. In: International Conference on Neural Information Processing, pp 315–322
19.
go back to reference Li X, Lu X, Wang H (2016) Robust common spatial patterns with sparsity. Biomed Signal Process Control 26:52–57 CrossRef Li X, Lu X, Wang H (2016) Robust common spatial patterns with sparsity. Biomed Signal Process Control 26:52–57 CrossRef
20.
go back to reference Wang H, Li X (2016) Regularized filters for L1-norm-based common spatial patterns. IEEE Trans Neural Syst Rehabil Eng 24(2):201–211 CrossRef Wang H, Li X (2016) Regularized filters for L1-norm-based common spatial patterns. IEEE Trans Neural Syst Rehabil Eng 24(2):201–211 CrossRef
21.
go back to reference Deng Y, Li Z, Wang H et al (2020) Local temporal joint recurrence common spatial patterns for MI-based BCI. In: 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference, pp 813–816 Deng Y, Li Z, Wang H et al (2020) Local temporal joint recurrence common spatial patterns for MI-based BCI. In: 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference, pp 813–816
22.
go back to reference Yong X, Ward R, Birch G (2008) Robust common spatial patterns for EEG signal preprocessing. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 2087–2090 Yong X, Ward R, Birch G (2008) Robust common spatial patterns for EEG signal preprocessing. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 2087–2090
23.
go back to reference Aljalal M, Djemal R, Ibrahim S (2019) Robot navigation using a brain computer interface based on motor imagery. J Med Biol Eng 39(4):508–522 CrossRef Aljalal M, Djemal R, Ibrahim S (2019) Robot navigation using a brain computer interface based on motor imagery. J Med Biol Eng 39(4):508–522 CrossRef
24.
go back to reference Webb A (1999) Statistical Pattern Recognition. United Kingdom, London MATH Webb A (1999) Statistical Pattern Recognition. United Kingdom, London MATH
25.
go back to reference Wolpaw J, Birbaumer N, McFarland D et al (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791 CrossRef Wolpaw J, Birbaumer N, McFarland D et al (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791 CrossRef
26.
go back to reference Parra L, Spence C, Gerson A et al (2005) Recipes for linear analysis of EEG. Neuroimage 28(2):326–341 CrossRef Parra L, Spence C, Gerson A et al (2005) Recipes for linear analysis of EEG. Neuroimage 28(2):326–341 CrossRef
27.
go back to reference Pfurtscheller G, Silva F (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857 CrossRef Pfurtscheller G, Silva F (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857 CrossRef
28.
go back to reference Zhao Y, Han J, Chen Y et al (2018) Improving generalization based on L1-norm regularization for EEG-based motor imagery classification. Front Neurosci 12:272 CrossRef Zhao Y, Han J, Chen Y et al (2018) Improving generalization based on L1-norm regularization for EEG-based motor imagery classification. Front Neurosci 12:272 CrossRef
29.
go back to reference Tang Q, Wang J, Wang H (2014) L1-norm based discriminative spatial pattern for single-trial EEG classification. Biomed Signal Process Control 10(3):313–321 CrossRef Tang Q, Wang J, Wang H (2014) L1-norm based discriminative spatial pattern for single-trial EEG classification. Biomed Signal Process Control 10(3):313–321 CrossRef
30.
go back to reference Huang L, Gu J, Li R et al (2013) A novel BCI classifier based on autoregressive model and support vector machine. Adv Mater Res 694–697:2522–2525 CrossRef Huang L, Gu J, Li R et al (2013) A novel BCI classifier based on autoregressive model and support vector machine. Adv Mater Res 694–697:2522–2525 CrossRef
31.
go back to reference Aboy M, McNames J, Márquez O et al (2004) Power spectral density estimation and tracking nonstationary pressure signals based on Kalman filtering. The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1:156–159 Aboy M, McNames J, Márquez O et al (2004) Power spectral density estimation and tracking nonstationary pressure signals based on Kalman filtering. The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1:156–159
32.
go back to reference Adeli H, Zhou Z, Dadmehr N (2003) Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods 123(1):69–87 CrossRef Adeli H, Zhou Z, Dadmehr N (2003) Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods 123(1):69–87 CrossRef
33.
go back to reference Delorme A, Sejnowski T, Makeig S (2007) Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 34(4):1443–1449 CrossRef Delorme A, Sejnowski T, Makeig S (2007) Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 34(4):1443–1449 CrossRef
Metadata
Title
Common Spatial Pattern with L21-Norm
Authors
Jingyu Gu
Mengting Wei
Yiyun Guo
Haixian Wang
Publication date
29-06-2021
Publisher
Springer US
Published in
Neural Processing Letters / Issue 5/2021
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10567-x

Other articles of this Issue 5/2021

Neural Processing Letters 5/2021 Go to the issue