Skip to main content
Top
Published in: Neural Processing Letters 5/2021

15-06-2021 | Correction

Correction to: Modeling Axonal Plasticity in Artificial Neural Networks

Author: James Ryland

Published in: Neural Processing Letters | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Excerpt

In the original publication, the reference order has been published incorrectly. Here is the correct order for the inline citations in the paper. …

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160(1):106–154CrossRef Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160(1):106–154CrossRef
2.
go back to reference Hubel DH, Wiesel TN (1965) Receptive fields and function architecture in two nonstriate visual ares (18 and 19) or the cat. J Neurophysiol 28(2):229–289CrossRef Hubel DH, Wiesel TN (1965) Receptive fields and function architecture in two nonstriate visual ares (18 and 19) or the cat. J Neurophysiol 28(2):229–289CrossRef
3.
go back to reference Quinlan PT (1998) Structural change and development in real and artificial neural networks. Neural Netw 11(4):577–599CrossRef Quinlan PT (1998) Structural change and development in real and artificial neural networks. Neural Netw 11(4):577–599CrossRef
4.
go back to reference McLaughlin T, O’Leary DDM (2005) Molecular gradients and development of retinotopic maps. Annu Rev Neurosci 28(1):327–355CrossRef McLaughlin T, O’Leary DDM (2005) Molecular gradients and development of retinotopic maps. Annu Rev Neurosci 28(1):327–355CrossRef
5.
go back to reference Price DJ, Kennedy H, Dehay C, Zhou L, Mercier M, Jossin Y, Goffinet AM, Tissir F, Blakey D, Molnár Z (2006) The development of cortical connections. Eur J Neurosci 23(4):910–920CrossRef Price DJ, Kennedy H, Dehay C, Zhou L, Mercier M, Jossin Y, Goffinet AM, Tissir F, Blakey D, Molnár Z (2006) The development of cortical connections. Eur J Neurosci 23(4):910–920CrossRef
6.
go back to reference Sperry RW (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci 50(4):703–710CrossRef Sperry RW (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci 50(4):703–710CrossRef
7.
go back to reference Gierer A (1987) Directional cues for growing axons forming the retinotectal projection. Development 101(3):479–489CrossRef Gierer A (1987) Directional cues for growing axons forming the retinotectal projection. Development 101(3):479–489CrossRef
8.
go back to reference Gierer A, Lewis W (1983) Model for the retino-tectal projection. Proc R Soc Lond Ser B Biol Sci 218(1210):77–93 Gierer A, Lewis W (1983) Model for the retino-tectal projection. Proc R Soc Lond Ser B Biol Sci 218(1210):77–93
9.
go back to reference Bishop KM, Goudreau G, O’Leary DDM (2000) Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288(5464):344–349CrossRef Bishop KM, Goudreau G, O’Leary DDM (2000) Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288(5464):344–349CrossRef
10.
go back to reference Bishop KM, Rubenstein JLR, O’Leary DDM (2002) Distinct actions of Emx1, Emx2, andPax6 in regulating the specification of areas in the developing neocortex. J Neurosci 22(17):7627–7638CrossRef Bishop KM, Rubenstein JLR, O’Leary DDM (2002) Distinct actions of Emx1, Emx2, andPax6 in regulating the specification of areas in the developing neocortex. J Neurosci 22(17):7627–7638CrossRef
11.
go back to reference Bishop KM, Garel S, Nakagawa Y, Rubenstein JLR, O’Leary DDM (2003) Emx1 and Emx2 cooperate to regulate cortical size, lamination, neuronal differentiation, development of cortical efferents, and thalamocortical pathfinding. J Comp Neurol 457(4):345–360CrossRef Bishop KM, Garel S, Nakagawa Y, Rubenstein JLR, O’Leary DDM (2003) Emx1 and Emx2 cooperate to regulate cortical size, lamination, neuronal differentiation, development of cortical efferents, and thalamocortical pathfinding. J Comp Neurol 457(4):345–360CrossRef
12.
go back to reference Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294(5544):1071–1074CrossRef Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294(5544):1071–1074CrossRef
13.
go back to reference Fukuchi-Shimogori T, Grove EA (2003) Emx2 patterns the neocortex by regulating FGF positional signaling. Nat Neurosci 6(8):825–831CrossRef Fukuchi-Shimogori T, Grove EA (2003) Emx2 patterns the neocortex by regulating FGF positional signaling. Nat Neurosci 6(8):825–831CrossRef
14.
go back to reference Hamasaki T, Leingärtner A, Ringstedt T, O’Leary DDM (2004) EMX2 Regulates sizes and positioning of the primary sensory and motor areas in neocortex by direct specification of cortical progenitors. Neuron 43(3):359–372CrossRef Hamasaki T, Leingärtner A, Ringstedt T, O’Leary DDM (2004) EMX2 Regulates sizes and positioning of the primary sensory and motor areas in neocortex by direct specification of cortical progenitors. Neuron 43(3):359–372CrossRef
15.
go back to reference Gogolla N, Galimberti I, Caroni P (2007) Structural plasticity of axon terminals in the adult. Curr Opin Neurobiol 17(5):516–524CrossRef Gogolla N, Galimberti I, Caroni P (2007) Structural plasticity of axon terminals in the adult. Curr Opin Neurobiol 17(5):516–524CrossRef
16.
go back to reference Meyer MP, Smith SJ (2006) Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. J Neurosci 26(13):3604–3614CrossRef Meyer MP, Smith SJ (2006) Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. J Neurosci 26(13):3604–3614CrossRef
17.
go back to reference Portera-Cailliau C, Weimer RM, De Paola V, Caroni P, Svoboda K (2005) Diverse modes of axon elaboration in the developing neocortex. PLoS Biol 3(8):8CrossRef Portera-Cailliau C, Weimer RM, De Paola V, Caroni P, Svoboda K (2005) Diverse modes of axon elaboration in the developing neocortex. PLoS Biol 3(8):8CrossRef
18.
go back to reference Ruthazer ES, Akerman CJ, Cline HT (2003) Control of axon branch dynamics by correlated activity in vivo. Science 301(5629):66–70CrossRef Ruthazer ES, Akerman CJ, Cline HT (2003) Control of axon branch dynamics by correlated activity in vivo. Science 301(5629):66–70CrossRef
19.
go back to reference Simon DK, Leary DD (1992) Development of topographic order in the mammalian retinocollicular projection. J Neurosci 12(4):1212–1232CrossRef Simon DK, Leary DD (1992) Development of topographic order in the mammalian retinocollicular projection. J Neurosci 12(4):1212–1232CrossRef
20.
go back to reference Simon DK, O’Leary DDM (1992) Influence of position along the medial-lateral axis of the superior colliculus on the topographic targeting and survival of retinal axons. Dev Brain Res 69(2):167–172CrossRef Simon DK, O’Leary DDM (1992) Influence of position along the medial-lateral axis of the superior colliculus on the topographic targeting and survival of retinal axons. Dev Brain Res 69(2):167–172CrossRef
21.
go back to reference Simon DK, O’Leary DDM (1992) Responses of retinal axons in vivo and in vitro to position-encoding molecules in the embryonic superior colliculus. Neuron 9(5):977–989CrossRef Simon DK, O’Leary DDM (1992) Responses of retinal axons in vivo and in vitro to position-encoding molecules in the embryonic superior colliculus. Neuron 9(5):977–989CrossRef
22.
go back to reference Yates PA, Holub AD, McLaughlin T, Sejnowski TJ, O’Leary DDM (2004) Computational modeling of retinotopic map development to define contributions of EphA-ephrinA gradients, axon-axon interactions, and patterned activity. J Neurobiol 59(1):95–113CrossRef Yates PA, Holub AD, McLaughlin T, Sejnowski TJ, O’Leary DDM (2004) Computational modeling of retinotopic map development to define contributions of EphA-ephrinA gradients, axon-axon interactions, and patterned activity. J Neurobiol 59(1):95–113CrossRef
23.
go back to reference Crowley JC, Katz LC (2000) Early development of ocular dominance columns. Science 290(5495):1321–1324CrossRef Crowley JC, Katz LC (2000) Early development of ocular dominance columns. Science 290(5495):1321–1324CrossRef
24.
go back to reference Crair MC, Gillespie DC, Stryker MP (1998) The role of visual experience in the development of columns in cat visual cortex. Science 279(5350):566–570CrossRef Crair MC, Gillespie DC, Stryker MP (1998) The role of visual experience in the development of columns in cat visual cortex. Science 279(5350):566–570CrossRef
25.
go back to reference Chapman B, Jacobson MD, Reiter HO, Stryker MP (1986) Ocular dominance shift in kitten visual cortex caused by imbalance in retinal electrical activity. Nature 324(6093):154–156CrossRef Chapman B, Jacobson MD, Reiter HO, Stryker MP (1986) Ocular dominance shift in kitten visual cortex caused by imbalance in retinal electrical activity. Nature 324(6093):154–156CrossRef
26.
go back to reference Innocenti GM, Price DJ (2005) Exuberance in the development of cortical networks. Nat Rev Neurosci 6(12):955–965CrossRef Innocenti GM, Price DJ (2005) Exuberance in the development of cortical networks. Nat Rev Neurosci 6(12):955–965CrossRef
27.
go back to reference Qiao Q, Ma L, Li W, Tsai J-W, Yang G, Gan W-B (2016) Long-term stability of axonal boutons in the mouse barrel cortex. Dev Neurobiol 76(3):252–261CrossRef Qiao Q, Ma L, Li W, Tsai J-W, Yang G, Gan W-B (2016) Long-term stability of axonal boutons in the mouse barrel cortex. Dev Neurobiol 76(3):252–261CrossRef
28.
go back to reference De Paola V, Holtmaat A, Knott G, Song S, Wilbrecht L, Caroni P, Svoboda K (2006) Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron 49(6):861–875CrossRef De Paola V, Holtmaat A, Knott G, Song S, Wilbrecht L, Caroni P, Svoboda K (2006) Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron 49(6):861–875CrossRef
29.
go back to reference Marik SA, Yamahachi H, McManus JNJ, Szabo G, Gilbert CD (2010) Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex. PLoS Biol 8(6):1–16CrossRef Marik SA, Yamahachi H, McManus JNJ, Szabo G, Gilbert CD (2010) Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex. PLoS Biol 8(6):1–16CrossRef
30.
go back to reference Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958MathSciNetMATH Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958MathSciNetMATH
31.
go back to reference Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202MATHCrossRef Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202MATHCrossRef
32.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105
33.
go back to reference Yamins DL, DiCarlo JJ (2016) Using goal-driven deep learning models to understand sensory cortex. Nat Neurosci 19:356–365CrossRef Yamins DL, DiCarlo JJ (2016) Using goal-driven deep learning models to understand sensory cortex. Nat Neurosci 19:356–365CrossRef
34.
go back to reference Fraser SE, Perkel DH (1990) Competitive and positional cues in the patterning of nerve connections. J Neurobiol 21(1):51–72CrossRef Fraser SE, Perkel DH (1990) Competitive and positional cues in the patterning of nerve connections. J Neurobiol 21(1):51–72CrossRef
35.
go back to reference Godfrey KB, Eglen SJ, Swindale NV (2009) A multi-component model of the developing retinocollicular pathway incorporating axonal and synaptic growth. PLoS Comput Biol 5(12):1–22MathSciNetCrossRef Godfrey KB, Eglen SJ, Swindale NV (2009) A multi-component model of the developing retinocollicular pathway incorporating axonal and synaptic growth. PLoS Comput Biol 5(12):1–22MathSciNetCrossRef
36.
go back to reference Simpson HD, Goodhill GJ (2011) A simple model can unify a broad range of phenomena in retinotectal map development. Biol Cybern 104(1):9–29MathSciNetMATHCrossRef Simpson HD, Goodhill GJ (2011) A simple model can unify a broad range of phenomena in retinotectal map development. Biol Cybern 104(1):9–29MathSciNetMATHCrossRef
37.
go back to reference Gebhardt C, Bastmeyer M, Weth F (2012) Balancing of ephrin/Eph forward and reverse signaling as the driving force of adaptive topographic mapping. Development 139(2):335–345CrossRef Gebhardt C, Bastmeyer M, Weth F (2012) Balancing of ephrin/Eph forward and reverse signaling as the driving force of adaptive topographic mapping. Development 139(2):335–345CrossRef
38.
go back to reference Benson DL, Colman DR, Huntley GW (2001) Molecules, maps and synapse specificity. Nat Rev Neurosci 2(12):899–909CrossRef Benson DL, Colman DR, Huntley GW (2001) Molecules, maps and synapse specificity. Nat Rev Neurosci 2(12):899–909CrossRef
39.
go back to reference Burt P, Adelson E (1983) The Laplacian pyramid as a compact image code. IEEE Trans Commun 31(4):532–540CrossRef Burt P, Adelson E (1983) The Laplacian pyramid as a compact image code. IEEE Trans Commun 31(4):532–540CrossRef
40.
go back to reference Wandell BA, Dumoulin SO, Brewer AA (2007) Visual field maps in human cortex. Neuron 56(2):366–383CrossRef Wandell BA, Dumoulin SO, Brewer AA (2007) Visual field maps in human cortex. Neuron 56(2):366–383CrossRef
41.
go back to reference Dougherty RF, Koch VM, Brewer AA, Fischer B, Modersitzki J, Wandell BA (2003) Visual field representations and locations of visual areas v1/2/3 in human visual cortex. J Vis 3(10):586–598CrossRef Dougherty RF, Koch VM, Brewer AA, Fischer B, Modersitzki J, Wandell BA (2003) Visual field representations and locations of visual areas v1/2/3 in human visual cortex. J Vis 3(10):586–598CrossRef
42.
go back to reference Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7(2):181–192CrossRef Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7(2):181–192CrossRef
43.
go back to reference Qiu A, Rosenau BJ, Greenberg AS, Hurdal MK, Barta P, Yantis S, Miller MI (2006) Estimating linear cortical magnification in human primary visual cortex via dynamic programming. Neuroimage 31(1):125–138CrossRef Qiu A, Rosenau BJ, Greenberg AS, Hurdal MK, Barta P, Yantis S, Miller MI (2006) Estimating linear cortical magnification in human primary visual cortex via dynamic programming. Neuroimage 31(1):125–138CrossRef
44.
go back to reference Issa NP, Trepel C, Stryker MP (2000) Spatial frequency maps in cat visual cortex. J Neurosci 20(22):8504CrossRef Issa NP, Trepel C, Stryker MP (2000) Spatial frequency maps in cat visual cortex. J Neurosci 20(22):8504CrossRef
45.
go back to reference Ribot J, Aushana Y, Bui-Quoc E, Milleret C (2013) Organization and origin of spatial frequency maps in cat visual cortex. J Neurosci 33(33):13326–13343CrossRef Ribot J, Aushana Y, Bui-Quoc E, Milleret C (2013) Organization and origin of spatial frequency maps in cat visual cortex. J Neurosci 33(33):13326–13343CrossRef
46.
go back to reference Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol 146(4):421–450CrossRef Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol 146(4):421–450CrossRef
47.
go back to reference LeVay S, Hubel DH, Wiesel TN (1975) The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. J Comp Neurol 159(4):559–575CrossRef LeVay S, Hubel DH, Wiesel TN (1975) The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. J Comp Neurol 159(4):559–575CrossRef
48.
go back to reference Le Vay S, Wiesel TN, Hubel DH (1980) The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol 191(1):1–51CrossRef Le Vay S, Wiesel TN, Hubel DH (1980) The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol 191(1):1–51CrossRef
49.
go back to reference Obermayer K, Blasdel GG (1993) Geometry of orientation and ocular dominance columns in monkey striate cortex. J Neurosci 13(10):4114–4129CrossRef Obermayer K, Blasdel GG (1993) Geometry of orientation and ocular dominance columns in monkey striate cortex. J Neurosci 13(10):4114–4129CrossRef
50.
go back to reference von der Malsburg C (1973) Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14(2):85–100CrossRef von der Malsburg C (1973) Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14(2):85–100CrossRef
51.
go back to reference Sirosh J, Miikkulainen R (1994) Cooperative self-organization of afferent and lateral connections in cortical maps. Biol Cybern 71(1):65–78MATHCrossRef Sirosh J, Miikkulainen R (1994) Cooperative self-organization of afferent and lateral connections in cortical maps. Biol Cybern 71(1):65–78MATHCrossRef
52.
go back to reference Stevens JLR, Law JS, Antolík J, Bednar JA (2013) Mechanisms for stable, robust, and adaptive development of orientation maps in the primary visual cortex. J Neurosci 33(40):15747–15766CrossRef Stevens JLR, Law JS, Antolík J, Bednar JA (2013) Mechanisms for stable, robust, and adaptive development of orientation maps in the primary visual cortex. J Neurosci 33(40):15747–15766CrossRef
53.
go back to reference Hubel DH, Wiesel TN, Stryker MP (1978) Anatomical demonstration of orientation columns in macaque monkey. J Comp Neurol 177(3):361–379CrossRef Hubel DH, Wiesel TN, Stryker MP (1978) Anatomical demonstration of orientation columns in macaque monkey. J Comp Neurol 177(3):361–379CrossRef
54.
go back to reference Blasdel GG (1992) Orientation selectivity, preference, and continuity in monkey striate cortex. J Neurosci 12(8):3139–3161CrossRef Blasdel GG (1992) Orientation selectivity, preference, and continuity in monkey striate cortex. J Neurosci 12(8):3139–3161CrossRef
55.
go back to reference Bonhoeffer T, Grinvald A (1991) Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353(6343):429–431CrossRef Bonhoeffer T, Grinvald A (1991) Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353(6343):429–431CrossRef
56.
go back to reference Durbin R, Mitchison G (1990) A dimension reduction framework for understanding cortical maps. Nature 343(6259):644–647CrossRef Durbin R, Mitchison G (1990) A dimension reduction framework for understanding cortical maps. Nature 343(6259):644–647CrossRef
57.
go back to reference Goodhill GJ, Cimponeriu A (2000) Analysis of the elastic net model applied to the formation of ocular dominance and orientation columns. Netw Comput Neural Syst 11(2):153–168MATHCrossRef Goodhill GJ, Cimponeriu A (2000) Analysis of the elastic net model applied to the formation of ocular dominance and orientation columns. Netw Comput Neural Syst 11(2):153–168MATHCrossRef
58.
go back to reference Miikkulainen R, Bednar JA, Choe Y, Sirosh J (2005) Computational maps in visual cortex. Springer, New York Miikkulainen R, Bednar JA, Choe Y, Sirosh J (2005) Computational maps in visual cortex. Springer, New York
59.
go back to reference Issa NP, Rosenberg A, Husson TR (2008) Models and measurements of functional maps in V1. J Neurophysiol 99(6):2745–2754CrossRef Issa NP, Rosenberg A, Husson TR (2008) Models and measurements of functional maps in V1. J Neurophysiol 99(6):2745–2754CrossRef
60.
go back to reference Bosking WH, Zhang Y, Schofield B, Fitzpatrick D (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17(6):2112–2127CrossRef Bosking WH, Zhang Y, Schofield B, Fitzpatrick D (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci 17(6):2112–2127CrossRef
61.
go back to reference Horton JC, Hocking DR (1996) Intrinsic variability of ocular dominance column periodicity in normal macaque monkeys. J Neurosci 16(22):7228–7339CrossRef Horton JC, Hocking DR (1996) Intrinsic variability of ocular dominance column periodicity in normal macaque monkeys. J Neurosci 16(22):7228–7339CrossRef
62.
go back to reference Humphrey AL, Sur M, Uhlrich DJ, Sherman SM (1985) Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. J Comp Neurol 233(2):159–189CrossRef Humphrey AL, Sur M, Uhlrich DJ, Sherman SM (1985) Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. J Comp Neurol 233(2):159–189CrossRef
63.
go back to reference Levy M, Lu Z, Dion G, Kara P (2014) The shape of dendritic arbors in different functional domains of the cortical orientation map. J Neurosci 34(9):3231–3236CrossRef Levy M, Lu Z, Dion G, Kara P (2014) The shape of dendritic arbors in different functional domains of the cortical orientation map. J Neurosci 34(9):3231–3236CrossRef
64.
go back to reference Elston GN, Rosa MG (1997) The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. Cereb Cortex 7(5):432–452CrossRef Elston GN, Rosa MG (1997) The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. Cereb Cortex 7(5):432–452CrossRef
65.
go back to reference Chklovskii DB (2000) Optimal sizes of dendritic and axonal arbors in a topographic projection. J Neurophysiol 83(4):2113–2119CrossRef Chklovskii DB (2000) Optimal sizes of dendritic and axonal arbors in a topographic projection. J Neurophysiol 83(4):2113–2119CrossRef
Metadata
Title
Correction to: Modeling Axonal Plasticity in Artificial Neural Networks
Author
James Ryland
Publication date
15-06-2021
Publisher
Springer US
Published in
Neural Processing Letters / Issue 5/2021
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10526-6

Other articles of this Issue 5/2021

Neural Processing Letters 5/2021 Go to the issue