Skip to main content
Top
Published in: Neural Processing Letters 5/2021

08-06-2021

Filippov FitzHugh-Nagumo Neuron Model with Membrane Potential Threshold Control Policy

Authors: Tao Dong, Huiyun Zhu

Published in: Neural Processing Letters | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a novel FitzHugh-Nagumo (FHN) neuron model with membrane potential threshold control policy is proposed. As the membrane potential threshold control policy is a switching control policy, our proposed model is a Filippov system, which is different from the existing FHN model. For this model, first, the sliding segments and sliding regions are investigated. Then, based on the obtained sliding regions, we discuss the null-clines and the existence conditions of various equilibria such as regular equilibrium, virtual equilibrium and boundary equilibrium. By choosing the membrane potential threshold as the bifurcation parameter, the boundary node bifurcation, pseudo-saddle-node bifurcation and the global touching bifurcation are investigated by using numerical techniques. Furthermore, the effectiveness and correctness of the proposed FHN model with membrane potential threshold control policy are verified by circuit simulation. Numerical examples show that the membrane potential threshold guided switching may cause complex dynamics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zheng Q, Zhao P, Li Y, et al. (2020) Spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification. Neural Computing and Applications, 1–23 Zheng Q, Zhao P, Li Y, et al. (2020) Spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification. Neural Computing and Applications, 1–23
2.
go back to reference Egrioglu E, Yolcu U, Aladag CH et al (2015) Recurrent multiplicative neuron model artificial neural network for non-linear time series forecasting. Neural Process Lett 41(2):249–258CrossRef Egrioglu E, Yolcu U, Aladag CH et al (2015) Recurrent multiplicative neuron model artificial neural network for non-linear time series forecasting. Neural Process Lett 41(2):249–258CrossRef
3.
go back to reference Zheng Q, Yang M, Yang J et al (2018) Improvement of generalization ability of deep CNN via implicit regularization in two-stage training process. IEEE Access 6:15844–15869CrossRef Zheng Q, Yang M, Yang J et al (2018) Improvement of generalization ability of deep CNN via implicit regularization in two-stage training process. IEEE Access 6:15844–15869CrossRef
4.
go back to reference Hu W, Qiao X, Dong T (2021) Spatiotemporal dynamic of a coupled neutral-type neural network with time delay and diffusion. Neural Comput Appl 33(12):6415–6426 Hu W, Qiao X, Dong T (2021) Spatiotemporal dynamic of a coupled neutral-type neural network with time delay and diffusion. Neural Comput Appl 33(12):6415–6426
5.
go back to reference Zheng Q, Tian X, Jiang N et al (2019) Layer-wise learning based stochastic gradient descent method for the optimization of deep convolutional neural network. J Intell Fuzzy Syst 37(4):5641–5654CrossRef Zheng Q, Tian X, Jiang N et al (2019) Layer-wise learning based stochastic gradient descent method for the optimization of deep convolutional neural network. J Intell Fuzzy Syst 37(4):5641–5654CrossRef
6.
go back to reference Sarkar A (2021) Deep Learning Guided Double Hidden Layer Neural Synchronization Through Mutual Learning. Neural Process Lett 53(2):1355–1384CrossRef Sarkar A (2021) Deep Learning Guided Double Hidden Layer Neural Synchronization Through Mutual Learning. Neural Process Lett 53(2):1355–1384CrossRef
7.
go back to reference Zheng Q, Tian X, Yang M, et al. (2019) PAC-Bayesian framework based drop-path method for 2D discriminative convolutional network pruning. Multidimensional Systems and Signal Processing, 1–35 Zheng Q, Tian X, Yang M, et al. (2019) PAC-Bayesian framework based drop-path method for 2D discriminative convolutional network pruning. Multidimensional Systems and Signal Processing, 1–35
8.
go back to reference Zheng Q, Yang M, Tian X, et al. (2020) A full stage data augmentation method in deep convolutional neural network for natural image classification. Discrete Dynamics in Nature and Society, 2020 Zheng Q, Yang M, Tian X, et al. (2020) A full stage data augmentation method in deep convolutional neural network for natural image classification. Discrete Dynamics in Nature and Society, 2020
9.
go back to reference Dong T, Zhu H (2021) Anti-control of periodic firing in HR model in the aspects of position, amplitude and frequency. Cognitive Neurodynamics 15:533–545 Dong T, Zhu H (2021) Anti-control of periodic firing in HR model in the aspects of position, amplitude and frequency. Cognitive Neurodynamics 15:533–545
10.
go back to reference Dong T, Bai J, Yang L (2019) Bifurcation analysis of delayed complex-valued neural network with diffusions. Neural Process Lett 50(2):1019–1033CrossRef Dong T, Bai J, Yang L (2019) Bifurcation analysis of delayed complex-valued neural network with diffusions. Neural Process Lett 50(2):1019–1033CrossRef
11.
go back to reference Dong T, Huang T (2020) Neural cryptography based on complex-valued neural network. IEEE Trans Neural Netw Learn Syst 31(11):4999–5004MathSciNetCrossRef Dong T, Huang T (2020) Neural cryptography based on complex-valued neural network. IEEE Trans Neural Netw Learn Syst 31(11):4999–5004MathSciNetCrossRef
12.
go back to reference Dong T, Zhang Q (2020) Stability and oscillation analysis of a gene regulatory network with multiple time delays and diffusion rate. IEEE Trans Nanobiosci 19(2):285–298CrossRef Dong T, Zhang Q (2020) Stability and oscillation analysis of a gene regulatory network with multiple time delays and diffusion rate. IEEE Trans Nanobiosci 19(2):285–298CrossRef
13.
go back to reference Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physio 117(4):500–544CrossRef Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physio 117(4):500–544CrossRef
14.
go back to reference FitzHugh R (1969) Mathematical models of excitation and propagation in nerve. Biological Engineering, 1–85 FitzHugh R (1969) Mathematical models of excitation and propagation in nerve. Biological Engineering, 1–85
15.
go back to reference Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35(1):193–213CrossRef Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35(1):193–213CrossRef
16.
go back to reference Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B Biol Sci 221(1222):87–102CrossRef Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B Biol Sci 221(1222):87–102CrossRef
17.
go back to reference Lu L, Ge M, Xu Y et al (2019) Phase synchronization and mode transition induced by multiple time delays and noises in coupled FitzHugh-Nagumo model. Phys A 535:122419MathSciNetCrossRef Lu L, Ge M, Xu Y et al (2019) Phase synchronization and mode transition induced by multiple time delays and noises in coupled FitzHugh-Nagumo model. Phys A 535:122419MathSciNetCrossRef
18.
go back to reference Zhang J, Liao X (2017) Synchronization and chaos in coupled memristor-based FitzHugh-Nagumo circuits with memristor synapse. Aeu-Int J Electr Commun 75:82–90CrossRef Zhang J, Liao X (2017) Synchronization and chaos in coupled memristor-based FitzHugh-Nagumo circuits with memristor synapse. Aeu-Int J Electr Commun 75:82–90CrossRef
19.
20.
go back to reference Chen S, Lim CC, Shi P et al (2018) Synchronization control for reaction-diffusion FitzHugh-Nagumo systems with spatial sampled-data. Automatica 93:352–362MathSciNetMATHCrossRef Chen S, Lim CC, Shi P et al (2018) Synchronization control for reaction-diffusion FitzHugh-Nagumo systems with spatial sampled-data. Automatica 93:352–362MathSciNetMATHCrossRef
21.
go back to reference Vaidyanathan S (2016) Global chaos control of the FitzHugh-Nagumo chaotic neuron model via integral sliding mode control. Int J PharmTech Res 9(4):413–425 Vaidyanathan S (2016) Global chaos control of the FitzHugh-Nagumo chaotic neuron model via integral sliding mode control. Int J PharmTech Res 9(4):413–425
22.
go back to reference Shim Y, Husbands P (2018) The chaotic dynamics and multistability of two coupled Fitzhugh-Nagumo model neurons. Adapt Behav 26(4):165–176CrossRef Shim Y, Husbands P (2018) The chaotic dynamics and multistability of two coupled Fitzhugh-Nagumo model neurons. Adapt Behav 26(4):165–176CrossRef
23.
go back to reference Korotkov AG, Kazakov AO, Levanova TA et al (2018) Chaotic regimes in the ensemble of FitzhHugh-Nagumo elements with weak couplings. IFAC-PapersOnLine 51(33):241–245CrossRef Korotkov AG, Kazakov AO, Levanova TA et al (2018) Chaotic regimes in the ensemble of FitzhHugh-Nagumo elements with weak couplings. IFAC-PapersOnLine 51(33):241–245CrossRef
24.
go back to reference Kuznetsov SP, Sedova YV (2018) Hyperbolic Chaos in Systems Based on FitzHugh-Nagumo Model Neurons. Regular Chaotic Dyn 23(4):458–470MathSciNetMATHCrossRef Kuznetsov SP, Sedova YV (2018) Hyperbolic Chaos in Systems Based on FitzHugh-Nagumo Model Neurons. Regular Chaotic Dyn 23(4):458–470MathSciNetMATHCrossRef
25.
go back to reference Jalnine AY (2015) Hyperbolic and non-hyperbolic chaos in a pair of coupled alternately excited FitzHugh-Nagumo systems. Commun Nonlinear Sci Numer Simul 23(1–3):202–208MathSciNetMATHCrossRef Jalnine AY (2015) Hyperbolic and non-hyperbolic chaos in a pair of coupled alternately excited FitzHugh-Nagumo systems. Commun Nonlinear Sci Numer Simul 23(1–3):202–208MathSciNetMATHCrossRef
27.
go back to reference Gaiko VA (2011) Multiple limit cycle bifurcations of the FitzHugh-Nagumo neuronal model. Nonlinear Anal: Theory, Method Appl 74(18):7532–7542MathSciNetMATHCrossRef Gaiko VA (2011) Multiple limit cycle bifurcations of the FitzHugh-Nagumo neuronal model. Nonlinear Anal: Theory, Method Appl 74(18):7532–7542MathSciNetMATHCrossRef
28.
go back to reference Shepelev IA, Shamshin DV, Strelkova GI et al (2017) Bifurcations of spatiotemporal structures in a medium of FitzHugh-Nagumo neurons with diffusive coupling. Chaos, Soliton Fractal 104:153–160MathSciNetMATHCrossRef Shepelev IA, Shamshin DV, Strelkova GI et al (2017) Bifurcations of spatiotemporal structures in a medium of FitzHugh-Nagumo neurons with diffusive coupling. Chaos, Soliton Fractal 104:153–160MathSciNetMATHCrossRef
29.
go back to reference Chen M, Qi J, Xu Q et al (2019) Quasi-period, periodic bursting and bifurcations in memristor-based FitzHugh-Nagumo circuit. AEU-Int J Electr Commun 110:152840CrossRef Chen M, Qi J, Xu Q et al (2019) Quasi-period, periodic bursting and bifurcations in memristor-based FitzHugh-Nagumo circuit. AEU-Int J Electr Commun 110:152840CrossRef
30.
go back to reference Din Q, Khaliq S, Rawalakot P (2018) Flip and Hopf bifurcations of discrete-time Fitzhugh-Nagumo model. Open J Math Sci 2(1):209–220CrossRef Din Q, Khaliq S, Rawalakot P (2018) Flip and Hopf bifurcations of discrete-time Fitzhugh-Nagumo model. Open J Math Sci 2(1):209–220CrossRef
31.
go back to reference Brandibur O, Kaslik E (2018) Stability of two-component incommensurate fractional-order systems and applications to the investigation of a FitzHugh-Nagumo neuronal mode. Math Method Appl Sci 41(17):7182–7194MATHCrossRef Brandibur O, Kaslik E (2018) Stability of two-component incommensurate fractional-order systems and applications to the investigation of a FitzHugh-Nagumo neuronal mode. Math Method Appl Sci 41(17):7182–7194MATHCrossRef
32.
go back to reference Tabi CB (2018) Dynamical analysis of the FitzHugh-Nagumo oscillations through a modified Van der Pol equation with fractional-order derivative term. Int J Non-Linear Mech 105:173–178CrossRef Tabi CB (2018) Dynamical analysis of the FitzHugh-Nagumo oscillations through a modified Van der Pol equation with fractional-order derivative term. Int J Non-Linear Mech 105:173–178CrossRef
33.
go back to reference Alidousti J, Ghaziani RK (2017) Spiking and bursting of a fractional order of the modified FitzHugh-Nagumo neuron model. Math Model Comput Simul 9(3):390–403MathSciNetCrossRef Alidousti J, Ghaziani RK (2017) Spiking and bursting of a fractional order of the modified FitzHugh-Nagumo neuron model. Math Model Comput Simul 9(3):390–403MathSciNetCrossRef
34.
go back to reference Chen CN, Ei SI, Tzeng S (2018) Heterogeneity-induced effects for pulse dynamics in Fitzhugh-Nagumo-type systems. Physica D 382:22–32MathSciNetMATH Chen CN, Ei SI, Tzeng S (2018) Heterogeneity-induced effects for pulse dynamics in Fitzhugh-Nagumo-type systems. Physica D 382:22–32MathSciNetMATH
35.
go back to reference Zahedi A, Haghiri S, Hayati M (2019) Multiplierless digital implementation of time-varying FitzHugh-Nagumo model. IEEE Trans Circuits Syst I Regul Pap 66(7):2662–2670MathSciNetMATHCrossRef Zahedi A, Haghiri S, Hayati M (2019) Multiplierless digital implementation of time-varying FitzHugh-Nagumo model. IEEE Trans Circuits Syst I Regul Pap 66(7):2662–2670MathSciNetMATHCrossRef
36.
go back to reference Selverston AI, Miller JP, Wadepuhl M (1983) Neural mechanisms for the production of cyclic motor patterns. IEEE Trans Syst, Man, Cyber 5:749–757CrossRef Selverston AI, Miller JP, Wadepuhl M (1983) Neural mechanisms for the production of cyclic motor patterns. IEEE Trans Syst, Man, Cyber 5:749–757CrossRef
37.
go back to reference Li F, Basu A, Chang CH et al (2012) Dynamical systems guided design and analysis of silicon oscillators for central pattern generators. IEEE Trans Circuits Syst I Regul Pap 59(12):3046–3059MathSciNetMATHCrossRef Li F, Basu A, Chang CH et al (2012) Dynamical systems guided design and analysis of silicon oscillators for central pattern generators. IEEE Trans Circuits Syst I Regul Pap 59(12):3046–3059MathSciNetMATHCrossRef
38.
go back to reference Holden AV, Winlow W (1983) Neuronal activity as the behavior of a differential system. IEEE Trans Syst, Man, Cyber 5:711–719MATHCrossRef Holden AV, Winlow W (1983) Neuronal activity as the behavior of a differential system. IEEE Trans Syst, Man, Cyber 5:711–719MATHCrossRef
39.
go back to reference Yu Z, Guo S, Deng F et al (2018) Emergent inference of hidden markov models in spiking neural networks through winner-take-all. IEEE Trans Cyber 50(3):1347–1354CrossRef Yu Z, Guo S, Deng F et al (2018) Emergent inference of hidden markov models in spiking neural networks through winner-take-all. IEEE Trans Cyber 50(3):1347–1354CrossRef
40.
go back to reference Farquhar E, Hasler P (2005) A bio-physically inspired silicon neuron. IEEE Trans Circuits Syst I Regul Pap 52(3):477–488CrossRef Farquhar E, Hasler P (2005) A bio-physically inspired silicon neuron. IEEE Trans Circuits Syst I Regul Pap 52(3):477–488CrossRef
41.
go back to reference Amir R, Michaelis M, Devor M (1999) Membrane potential oscillations in dorsal root ganglion neurons: role in normal electrogenesis and neuropathic pain. J Neurosci 19(19):8589–8596CrossRef Amir R, Michaelis M, Devor M (1999) Membrane potential oscillations in dorsal root ganglion neurons: role in normal electrogenesis and neuropathic pain. J Neurosci 19(19):8589–8596CrossRef
42.
go back to reference Stern EA, Kincaid AE, Wilson CJ (1997) Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J Neurophysiol 77(4):1697–1715CrossRef Stern EA, Kincaid AE, Wilson CJ (1997) Spontaneous subthreshold membrane potential fluctuations and action potential variability of rat corticostriatal and striatal neurons in vivo. J Neurophysiol 77(4):1697–1715CrossRef
43.
go back to reference He Z, Li C, Chen L et al (2020) Dynamic behaviors of the FitzHugh-Nagumo neuron model with state-dependent impulsive effects. Neural Netw 121:497–511MATHCrossRef He Z, Li C, Chen L et al (2020) Dynamic behaviors of the FitzHugh-Nagumo neuron model with state-dependent impulsive effects. Neural Netw 121:497–511MATHCrossRef
44.
go back to reference Filippov AF (2013) Differential equations with discontinuous righthand sides: control systems. Springer Science & Business Media, Berlin Filippov AF (2013) Differential equations with discontinuous righthand sides: control systems. Springer Science & Business Media, Berlin
45.
go back to reference Kuznetsov YA, Rinaldi S, Gragnani A (2003) One-parameter bifurcations in planar Filippov systems. Int J Bifurcation chaos 13(08):2157–2188MathSciNetMATHCrossRef Kuznetsov YA, Rinaldi S, Gragnani A (2003) One-parameter bifurcations in planar Filippov systems. Int J Bifurcation chaos 13(08):2157–2188MathSciNetMATHCrossRef
46.
go back to reference Utkin VI (2013) Sliding modes in control and optimization. Springer Science & Business Media, Berlin Utkin VI (2013) Sliding modes in control and optimization. Springer Science & Business Media, Berlin
47.
go back to reference Yang Y, Liao X (2018) Filippov hindmarsh-rose neuronal model with threshold policy control. IEEE Trans Neural Netw Learn Syst 30(1):306–311CrossRef Yang Y, Liao X (2018) Filippov hindmarsh-rose neuronal model with threshold policy control. IEEE Trans Neural Netw Learn Syst 30(1):306–311CrossRef
48.
go back to reference Zhang X, Tang S (2014) Existence of multiple sliding segments and bifurcation analysis of Filippov prey-predator model. Appl Math Comput 239:265–284MathSciNetMATH Zhang X, Tang S (2014) Existence of multiple sliding segments and bifurcation analysis of Filippov prey-predator model. Appl Math Comput 239:265–284MathSciNetMATH
49.
go back to reference Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim Cosmochim Acta 57(3):683–684CrossRef Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim Cosmochim Acta 57(3):683–684CrossRef
Metadata
Title
Filippov FitzHugh-Nagumo Neuron Model with Membrane Potential Threshold Control Policy
Authors
Tao Dong
Huiyun Zhu
Publication date
08-06-2021
Publisher
Springer US
Published in
Neural Processing Letters / Issue 5/2021
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10549-z

Other articles of this Issue 5/2021

Neural Processing Letters 5/2021 Go to the issue