Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Neural Processing Letters 5/2021

29-10-2020

Integrating Machine Learning Techniques in Semantic Fake News Detection

Authors: Adrian M. P. Braşoveanu, Răzvan Andonie

Published in: Neural Processing Letters | Issue 5/2021

Login to get access
share
SHARE

Abstract

The nuances of languages, as well as the varying degrees of truth observed in news items, make fake news detection a difficult problem to solve. A news item is never launched without a purpose, therefore in order to understand its motivation it is best to analyze the relations between the speaker and its subject, as well as different credibility metrics. Inferring details about the various actors involved in a news item is a problem that requires a hybrid approach that mixes machine learning, semantics and natural language processing. This article discusses a semantic fake news detection method built around relational features like sentiment, entities or facts extracted directly from text. Our experiments are focused on short texts with different degrees of truth and show that adding semantic features improves accuracy significantly.
Literature
1.
go back to reference Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker PA, Vasudevan V, Warden P, Wicke M, Yu Y, Zhang X (2016) Tensorflow: a system for large-scale machine learning. CoRR. arXiv:​1605.​08695 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker PA, Vasudevan V, Warden P, Wicke M, Yu Y, Zhang X (2016) Tensorflow: a system for large-scale machine learning. CoRR. arXiv:​1605.​08695
2.
go back to reference Aghakhani H, Machiry A, Nilizadeh S, Kruegel C, Vigna G (2018) Detecting deceptive reviews using generative adversarial networks. CoRR. arXiv:​1805.​10364 Aghakhani H, Machiry A, Nilizadeh S, Kruegel C, Vigna G (2018) Detecting deceptive reviews using generative adversarial networks. CoRR. arXiv:​1805.​10364
4.
go back to reference Allcott H, Gentzkow M (2017) Social media and fake news in the 2016 election. J. Econ. Perspect. 31(2):211–36 CrossRef Allcott H, Gentzkow M (2017) Social media and fake news in the 2016 election. J. Econ. Perspect. 31(2):211–36 CrossRef
6.
go back to reference Barrón-Cedeño A, Martino GDS, Jaradat I, Nakov P (2019) Proppy: a system to unmask propaganda in online news. In: The 33rd AAAI conference on artificial intelligence, AAAI 2019, the thirty-first innovative applications of artificial intelligence conference, IAAI 2019, the ninth AAAI symposium on educational advances in artificial intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27–February 1, 2019, AAAI Press, pp 9847–9848. https://​aaai.​org/​ojs/​index.​php/​AAAI/​article/​view/​5061 Barrón-Cedeño A, Martino GDS, Jaradat I, Nakov P (2019) Proppy: a system to unmask propaganda in online news. In: The 33rd AAAI conference on artificial intelligence, AAAI 2019, the thirty-first innovative applications of artificial intelligence conference, IAAI 2019, the ninth AAAI symposium on educational advances in artificial intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27–February 1, 2019, AAAI Press, pp 9847–9848. https://​aaai.​org/​ojs/​index.​php/​AAAI/​article/​view/​5061
9.
go back to reference Brasoveanu AMP, Andonie R (2019) Semantic fake news detection: a machine learning perspective. In: Rojas I, Joya G, Català A (eds) Advances in computational intelligence—15th international work-conference on artificial neural networks, IWANN 2019, Gran Canaria, Spain, June 12–14, 2019, Proceedings, part I, Springer, lecture notes in computer science, vol 11506, pp 656–667. https://​doi.​org/​10.​1007/​978-3-030-20521-8_​54 Brasoveanu AMP, Andonie R (2019) Semantic fake news detection: a machine learning perspective. In: Rojas I, Joya G, Català A (eds) Advances in computational intelligence—15th international work-conference on artificial neural networks, IWANN 2019, Gran Canaria, Spain, June 12–14, 2019, Proceedings, part I, Springer, lecture notes in computer science, vol 11506, pp 656–667. https://​doi.​org/​10.​1007/​978-3-030-20521-8_​54
12.
go back to reference Chollet F (2017) Deep learning with python. Manning Publications Co Chollet F (2017) Deep learning with python. Manning Publications Co
14.
go back to reference Daiber J, Jakob M, Hokamp C, Mendes PN (2013) Improving efficiency and accuracy in multilingual entity extraction. In: Sabou M, Blomqvist E, Noia TD, Sack H, Pellegrini T (eds) I-SEMANTICS 2013—9th international conference on semantic systems, ISEM ’13, Graz, Austria, September 4–6, 2013, ACM, pp 121–124. https://​doi.​org/​10.​1145/​2506182.​2506198 Daiber J, Jakob M, Hokamp C, Mendes PN (2013) Improving efficiency and accuracy in multilingual entity extraction. In: Sabou M, Blomqvist E, Noia TD, Sack H, Pellegrini T (eds) I-SEMANTICS 2013—9th international conference on semantic systems, ISEM ’13, Graz, Austria, September 4–6, 2013, ACM, pp 121–124. https://​doi.​org/​10.​1145/​2506182.​2506198
15.
go back to reference Devlin J, Chang M, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein J, Doran C, Solorio T (eds) Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2–7, 2019, vol 1 (long and short papers), Association for Computational Linguistics, pp 4171–4186. https://​doi.​org/​10.​18653/​v1/​n19-1423 Devlin J, Chang M, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein J, Doran C, Solorio T (eds) Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2–7, 2019, vol 1 (long and short papers), Association for Computational Linguistics, pp 4171–4186. https://​doi.​org/​10.​18653/​v1/​n19-1423
20.
go back to reference Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville AC, Bengio Y (2014) Generative adversarial nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ (eds) Advances in neural information processing systems 27: annual conference on neural information processing systems 2014, December 8–13 2014, Montreal, Quebec, Canada, pp 2672–2680. http://​papers.​nips.​cc/​paper/​5423-generative-adversarial-nets Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville AC, Bengio Y (2014) Generative adversarial nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ (eds) Advances in neural information processing systems 27: annual conference on neural information processing systems 2014, December 8–13 2014, Montreal, Quebec, Canada, pp 2672–2680. http://​papers.​nips.​cc/​paper/​5423-generative-adversarial-nets
22.
go back to reference Guyon I, von Luxburg U, Bengio S, Wallach HM, Fergus R, Vishwanathan SVN, Garnett R (eds) (2017) Advances in neural information processing systems 30: annual conference on neural information processing systems 2017, 4–9 December 2017, Long Beach, CA, USA Guyon I, von Luxburg U, Bengio S, Wallach HM, Fergus R, Vishwanathan SVN, Garnett R (eds) (2017) Advances in neural information processing systems 30: annual conference on neural information processing systems 2017, 4–9 December 2017, Long Beach, CA, USA
23.
go back to reference Habib A, Asghar MZ, Khan A, Habib A, Khan A (2019) False information detection in online content and its role in decision making: a systematic literature review. Soc Netw Anal Min 9(1):50 CrossRef Habib A, Asghar MZ, Khan A, Habib A, Khan A (2019) False information detection in online content and its role in decision making: a systematic literature review. Soc Netw Anal Min 9(1):50 CrossRef
25.
go back to reference Irie K, Tüske Z, Alkhouli T, Schlüter R, Ney H (2016) LSTM, GRU, highway and a bit of attention: an empirical overview for language modeling in speech recognition. In: Morgan N (ed) Interspeech 2016, 17th annual conference of the international speech communication association, San Francisco, CA, USA, September 8–12, 2016, ISCA, pp 3519–3523. https://​doi.​org/​10.​21437/​Interspeech.​2016-491 Irie K, Tüske Z, Alkhouli T, Schlüter R, Ney H (2016) LSTM, GRU, highway and a bit of attention: an empirical overview for language modeling in speech recognition. In: Morgan N (ed) Interspeech 2016, 17th annual conference of the international speech communication association, San Francisco, CA, USA, September 8–12, 2016, ISCA, pp 3519–3523. https://​doi.​org/​10.​21437/​Interspeech.​2016-491
29.
go back to reference Kiesel J, Mestre M, Shukla R, Vincent E, Adineh P, Corney D, Stein B, Potthast M (2019) Semeval-2019 task 4: hyperpartisan news detection. In: May J, Shutova E, Herbelot A, Zhu X, Apidianaki M, Mohammad SM (eds) Proceedings of the 13th international workshop on semantic evaluation, SemEval@NAACL-HLT 2019, Minneapolis, MN, USA, June 6–7, 2019, Association for Computational Linguistics, pp 829–839. https://​www.​aclweb.​org/​anthology/​S19-2145/​ Kiesel J, Mestre M, Shukla R, Vincent E, Adineh P, Corney D, Stein B, Potthast M (2019) Semeval-2019 task 4: hyperpartisan news detection. In: May J, Shutova E, Herbelot A, Zhu X, Apidianaki M, Mohammad SM (eds) Proceedings of the 13th international workshop on semantic evaluation, SemEval@NAACL-HLT 2019, Minneapolis, MN, USA, June 6–7, 2019, Association for Computational Linguistics, pp 829–839. https://​www.​aclweb.​org/​anthology/​S19-2145/​
31.
go back to reference Kim Y (2014) Convolutional neural networks for sentence classification. In: Moschitti A, Pang B, Daelemans W (eds) Proceedings of the 2014 conference on empirical methods in natural language processing, EMNLP 2014, October 25–29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, ACL, pp 1746–1751. https://​www.​aclweb.​org/​anthology/​D14-1181/​ Kim Y (2014) Convolutional neural networks for sentence classification. In: Moschitti A, Pang B, Daelemans W (eds) Proceedings of the 2014 conference on empirical methods in natural language processing, EMNLP 2014, October 25–29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, ACL, pp 1746–1751. https://​www.​aclweb.​org/​anthology/​D14-1181/​
36.
37.
go back to reference Liu C, Wu X, Yu M, Li G, Jiang J, Huang W, Lu X (2019) A two-stage model based on bert for short fake news detection. In: International conference on knowledge science, Springer, Engineering and Management, pp 172–183 Liu C, Wu X, Yu M, Li G, Jiang J, Huang W, Lu X (2019) A two-stage model based on bert for short fake news detection. In: International conference on knowledge science, Springer, Engineering and Management, pp 172–183
39.
go back to reference Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V (2019) Roberta: a robustly optimized BERT pretraining approach. CoRR. arXiv:​1907.​11692 Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V (2019) Roberta: a robustly optimized BERT pretraining approach. CoRR. arXiv:​1907.​11692
40.
go back to reference Long Y, Lu Q, Xiang R, Li M, Huang C (2017) Fake news detection through multi-perspective speaker profiles. In: Kondrak G, Watanabe T (eds) Proceedings of the eighth international joint conference on natural language processing, IJCNLP 2017, Taipei, Taiwan, November 27–December 1, 2017, vol 2: short papers, Asian Federation of Natural Language Processing, pp 252–256. https://​aclanthology.​info/​papers/​I17-2043/​i17-2043 Long Y, Lu Q, Xiang R, Li M, Huang C (2017) Fake news detection through multi-perspective speaker profiles. In: Kondrak G, Watanabe T (eds) Proceedings of the eighth international joint conference on natural language processing, IJCNLP 2017, Taipei, Taiwan, November 27–December 1, 2017, vol 2: short papers, Asian Federation of Natural Language Processing, pp 252–256. https://​aclanthology.​info/​papers/​I17-2043/​i17-2043
42.
go back to reference Mikolov T, Grave E, Bojanowski P, Puhrsch C, Joulin A (2018) Advances in Pre-Training Distributed Word Representations. In: Calzolari N, Choukri K, Cieri C, Declerck T, Goggi S, Hasida K, Isahara H, Maegaard B, Mariani J, Mazo H, Moreno A, Odijk J, Piperidis S, Tokunaga T (eds) Proceedings of the eleventh international conference on language resources and evaluation, LREC 2018, Miyazaki, Japan, May 7–12, 2018., European Language Resources Association (ELRA). http://​www.​lrec-conf.​org/​lrec2018 Mikolov T, Grave E, Bojanowski P, Puhrsch C, Joulin A (2018) Advances in Pre-Training Distributed Word Representations. In: Calzolari N, Choukri K, Cieri C, Declerck T, Goggi S, Hasida K, Isahara H, Maegaard B, Mariani J, Mazo H, Moreno A, Odijk J, Piperidis S, Tokunaga T (eds) Proceedings of the eleventh international conference on language resources and evaluation, LREC 2018, Miyazaki, Japan, May 7–12, 2018., European Language Resources Association (ELRA). http://​www.​lrec-conf.​org/​lrec2018
45.
go back to reference Qi Y, Sachan DS, Felix M, Padmanabhan S, Neubig G (2018) When and why are pre-trained word embeddings useful for neural machine translation? In: Walker MA, Ji H, Stent A (eds) Proceedings of the 2018 conference of the North American chapter of the association for computational linguistics: human language technologies, NAACL-HLT, New Orleans, Louisiana, USA, June 1–6, 2018, vol 2 (Short Papers), Association for Computational Linguistics, pp 529–535. https://​aclanthology.​info/​papers/​N18-2084/​n18-2084 Qi Y, Sachan DS, Felix M, Padmanabhan S, Neubig G (2018) When and why are pre-trained word embeddings useful for neural machine translation? In: Walker MA, Ji H, Stent A (eds) Proceedings of the 2018 conference of the North American chapter of the association for computational linguistics: human language technologies, NAACL-HLT, New Orleans, Louisiana, USA, June 1–6, 2018, vol 2 (Short Papers), Association for Computational Linguistics, pp 529–535. https://​aclanthology.​info/​papers/​N18-2084/​n18-2084
46.
go back to reference Rashkin H, Choi E, Jang JY, Volkova S, Choi Y (2017) Truth of varying shades: analyzing language in fake news and political fact-checking. In: Palmer M, Hwa R, Riedel S (eds) Proceedings of the 2017 conference on empirical methods in natural language processing, EMNLP 2017, Copenhagen, Denmark, September 9–11, 2017, Association for Computational Linguistics, pp 2931–2937. https://​aclanthology.​info/​papers/​D17-1317/​d17-1317 Rashkin H, Choi E, Jang JY, Volkova S, Choi Y (2017) Truth of varying shades: analyzing language in fake news and political fact-checking. In: Palmer M, Hwa R, Riedel S (eds) Proceedings of the 2017 conference on empirical methods in natural language processing, EMNLP 2017, Copenhagen, Denmark, September 9–11, 2017, Association for Computational Linguistics, pp 2931–2937. https://​aclanthology.​info/​papers/​D17-1317/​d17-1317
47.
go back to reference Ribeiro MT, Singh S, Guestrin C (2016) “why should I trust you?”: explaining the predictions of any classifier. In: Krishnapuram B, Shah M, Smola AJ, Aggarwal CC, Shen D, Rastogi R (eds) Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, CA, USA, August 13–17, 2016, ACM, pp 1135–1144. https://​doi.​org/​10.​1145/​2939672.​2939778 Ribeiro MT, Singh S, Guestrin C (2016) “why should I trust you?”: explaining the predictions of any classifier. In: Krishnapuram B, Shah M, Smola AJ, Aggarwal CC, Shen D, Rastogi R (eds) Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, San Francisco, CA, USA, August 13–17, 2016, ACM, pp 1135–1144. https://​doi.​org/​10.​1145/​2939672.​2939778
48.
go back to reference Rubin V, Conroy N, Chen Y, Cornwell S (2016) Fake news or truth? Using satirical cues to detect potentially misleading news. In: Proceedings of the second workshop on computational approaches to deception detection, pp 7–17 Rubin V, Conroy N, Chen Y, Cornwell S (2016) Fake news or truth? Using satirical cues to detect potentially misleading news. In: Proceedings of the second workshop on computational approaches to deception detection, pp 7–17
49.
go back to reference Rubin VL, Chen Y, Conroy NJ (2015) Deception detection for news: three types of fakes. In: Information science with impact: research in and for the community—proceedings of the 78th ASISand T annual meeting, ASIST 2015, St. Louis, Missouri, Missouri, USA, October 6–10, 2015, Wiley, Proceedings of the association for information science and technology, vol 52, no 1, pp 1–4. https://​doi.​org/​10.​1002/​pra2.​2015.​145052010083 Rubin VL, Chen Y, Conroy NJ (2015) Deception detection for news: three types of fakes. In: Information science with impact: research in and for the community—proceedings of the 78th ASISand T annual meeting, ASIST 2015, St. Louis, Missouri, Missouri, USA, October 6–10, 2015, Wiley, Proceedings of the association for information science and technology, vol 52, no 1, pp 1–4. https://​doi.​org/​10.​1002/​pra2.​2015.​145052010083
50.
go back to reference Ruchansky N, Seo S, Liu Y (2017) CSI: a hybrid deep model for fake news detection. In: [36], pp 797–806 Ruchansky N, Seo S, Liu Y (2017) CSI: a hybrid deep model for fake news detection. In: [36], pp 797–806
52.
go back to reference Schlichtkrull MS, Kipf TN, Bloem P, van den Berg R, Titov I, Welling M (2018) Modeling relational data with graph convolutional networks. In: Gangemi A, Navigli R, Vidal M, Hitzler P, Troncy R, Hollink L, Tordai A, Alam M (eds) The semantic web: 15th international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings, Springer, lecture notes in computer science, vol 10843, pp 593–607. https://​doi.​org/​10.​1007/​978-3-319-93417-4_​38 Schlichtkrull MS, Kipf TN, Bloem P, van den Berg R, Titov I, Welling M (2018) Modeling relational data with graph convolutional networks. In: Gangemi A, Navigli R, Vidal M, Hitzler P, Troncy R, Hollink L, Tordai A, Alam M (eds) The semantic web: 15th international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings, Springer, lecture notes in computer science, vol 10843, pp 593–607. https://​doi.​org/​10.​1007/​978-3-319-93417-4_​38
55.
go back to reference Singhania S, Fernandez N, Rao S (2017) 3HAN: a deep neural network for fake news detection. In: Liu D, Xie S, Li Y, Zhao D, El-Alfy EM (eds) Neural information processing: 24th international conference, ICONIP 2017, Guangzhou, China, November 14–18, 2017, Proceedings, part II, Springer, lecture notes in computer science, vol 10635, pp 572–581. https://​doi.​org/​10.​1007/​978-3-319-70096-0_​59 Singhania S, Fernandez N, Rao S (2017) 3HAN: a deep neural network for fake news detection. In: Liu D, Xie S, Li Y, Zhao D, El-Alfy EM (eds) Neural information processing: 24th international conference, ICONIP 2017, Guangzhou, China, November 14–18, 2017, Proceedings, part II, Springer, lecture notes in computer science, vol 10635, pp 572–581. https://​doi.​org/​10.​1007/​978-3-319-70096-0_​59
56.
go back to reference Solaiman I, Brundage M, Clark J, Askell A, Herbert-Voss A, Wu J, Radford A, Wang J (2019) Release strategies and the social impacts of language models. CoRR. arXiv:​1908.​09203 Solaiman I, Brundage M, Clark J, Askell A, Herbert-Voss A, Wu J, Radford A, Wang J (2019) Release strategies and the social impacts of language models. CoRR. arXiv:​1908.​09203
60.
go back to reference Vo N, Lee K (2018) The rise of guardians: fact-checking URL recommendation to combat fake news. In: Collins-Thompson K, Mei Q, Davison BD, Liu Y, Yilmaz E (eds) The 41st international ACM SIGIR conference on research and development in information retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08–12, 2018, ACM, pp 275–284. https://​doi.​org/​10.​1145/​3209978.​3210037 Vo N, Lee K (2018) The rise of guardians: fact-checking URL recommendation to combat fake news. In: Collins-Thompson K, Mei Q, Davison BD, Liu Y, Yilmaz E (eds) The 41st international ACM SIGIR conference on research and development in information retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08–12, 2018, ACM, pp 275–284. https://​doi.​org/​10.​1145/​3209978.​3210037
61.
go back to reference Vosoughi S, Roy D, Aral S (2018) The spread of true and false news online. Science 359(6380):1146–1151 CrossRef Vosoughi S, Roy D, Aral S (2018) The spread of true and false news online. Science 359(6380):1146–1151 CrossRef
63.
go back to reference Wu L, Liu H (2018) Tracing fake-news footprints: characterizing social media messages by how they propagate. In: Chang Y, Zhai C, Liu Y, Maarek Y (eds) Proceedings of the eleventh ACM international conference on web search and data mining, WSDM 2018, Marina Del Rey, CA, USA, February 5–9, 2018, ACM, pp 637–645. https://​doi.​org/​10.​1145/​3159652.​3159677 Wu L, Liu H (2018) Tracing fake-news footprints: characterizing social media messages by how they propagate. In: Chang Y, Zhai C, Liu Y, Maarek Y (eds) Proceedings of the eleventh ACM international conference on web search and data mining, WSDM 2018, Marina Del Rey, CA, USA, February 5–9, 2018, ACM, pp 637–645. https://​doi.​org/​10.​1145/​3159652.​3159677
66.
go back to reference Zannettou S, Sirivianos M, Blackburn J, Kourtellis N (2018) The web of false information: rumors, fake news, Hoaxes, Clickbait, and various other shenanigans. CoRR. arXiv:​1804.​03461 Zannettou S, Sirivianos M, Blackburn J, Kourtellis N (2018) The web of false information: rumors, fake news, Hoaxes, Clickbait, and various other shenanigans. CoRR. arXiv:​1804.​03461
67.
go back to reference Zellers R, Holtzman A, Rashkin H, Bisk Y, Farhadi A, Roesner F, Choi Y (2019) Defending against neural fake news. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox EB, Garnett R (eds) Advances in neural information processing systems 32: annual conference on neural information processing systems 2019, NeurIPS 2019, 8–14 December 2019, Vancouver, BC, Canada, pp 9051–9062. http://​papers.​nips.​cc/​paper/​9106-defending-against-neural-fake-news Zellers R, Holtzman A, Rashkin H, Bisk Y, Farhadi A, Roesner F, Choi Y (2019) Defending against neural fake news. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox EB, Garnett R (eds) Advances in neural information processing systems 32: annual conference on neural information processing systems 2019, NeurIPS 2019, 8–14 December 2019, Vancouver, BC, Canada, pp 9051–9062. http://​papers.​nips.​cc/​paper/​9106-defending-against-neural-fake-news
Metadata
Title
Integrating Machine Learning Techniques in Semantic Fake News Detection
Authors
Adrian M. P. Braşoveanu
Răzvan Andonie
Publication date
29-10-2020
Publisher
Springer US
Published in
Neural Processing Letters / Issue 5/2021
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-020-10365-x

Other articles of this Issue 5/2021

Neural Processing Letters 5/2021 Go to the issue