Skip to main content
Top
Published in: Journal of Scientific Computing 1/2013

01-01-2013

Compact Numerical Quadrature Formulas for Hypersingular Integrals and Integral Equations

Author: Avram Sidi

Published in: Journal of Scientific Computing | Issue 1/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the first part of this work, we derive compact numerical quadrature formulas for finite-range integrals \(I[f]=\int^{b}_{a}f(x)\,dx\), where f(x)=g(x)|xt| β , β being real. Depending on the value of β, these integrals are defined either in the regular sense or in the sense of Hadamard finite part. Assuming that gC [a,b], or gC (a,b) but can have arbitrary algebraic singularities at x=a and/or x=b, and letting h=(ba)/n, n an integer, we derive asymptotic expansions for \({T}^{*}_{n}[f]=h\sum_{1\leq j\leq n-1,\ x_{j}\neq t}f(x_{j})\), where x j =a+jh and t∈{x 1,…,x n−1}. These asymptotic expansions are based on some recent generalizations of the Euler–Maclaurin expansion due to the author (A. Sidi, Euler–Maclaurin expansions for integrals with arbitrary algebraic endpoint singularities, in Math. Comput., 2012), and are used to construct our quadrature formulas, whose accuracies are then increased at will by applying to them the Richardson extrapolation process. We pay particular attention to the case in which β=−2 and f(x) is T-periodic with T=ba and \(f\in C^{\infty}(-\infty,\infty)\setminus\{t+kT\}^{\infty}_{k=-\infty}\), which arises in the context of periodic hypersingular integral equations. For this case, we propose the remarkably simple and compact quadrature formula \(\widehat{Q}_{n}[f]=h\sum^{n}_{j=1}f(t+jh-h/2)-\pi^{2} g(t)h^{-1}\), and show that \(\widehat{Q}_{n}[f]-I[f]=O(h^{\mu})\) as h→0 ∀μ>0, and that it is exact for a class of singular integrals involving trigonometric polynomials of degree at most n. We show how \(\widehat{Q}_{n}[f]\) can be used for solving hypersingular integral equations in an efficient manner. In the second part of this work, we derive the Euler–Maclaurin expansion for integrals \(I[f]=\int^{b}_{a} f(x)dx\), where f(x)=g(x)(xt) β , with g(x) as before and β=−1,−3,−5,…, from which suitable quadrature formulas can be obtained. We revisit the case of β=−1, for which the known quadrature formula \(\widetilde{Q}_{n}[f]=h\sum^{n}_{j=1}f(t+jh-h/2)\) satisfies \(\widetilde{Q}_{n}[f]-I[f]=O(h^{\mu})\) as h→0 ∀μ>0, when f(x) is T-periodic with T=ba and \(f\in C^{\infty}(-\infty,\infty)\setminus\{t+kT\}^{\infty}_{k=-\infty}\). We show that this formula too is exact for a class of singular integrals involving trigonometric polynomials of degree at most n−1. We provide numerical examples involving periodic integrands that confirm the theoretical results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The usual notation for integrals defined in the sense of the Hadamard finite part (HFP) is \({\mbox{\footnotesize $=$}}\hspace{-1em}\int^{b}_{a} f(x)\,dx\). In this work, we denote them by \(\int^{b}_{a}f(x)\, dx\), as in (1.3), for simplicity. For the definition and properties of Hadamard finite part integrals, see Davis and Rabinowitz [2], Evans [3], or Kythe and Schäferkotter [6], for example. These integrals have most of the properties of regular integrals and some properties that are quite unusual. For example, they are invariant with respect to translation, but they are not necessarily invariant under a scaling of the variable of integration.
 
2
The paper [22] makes use of the generalizations of the E–M expansions due to Navot [14] and [15] and it treats the convergent cases of Re β>−1 in (1.3). The generalized E–M expansions of [20], however, help to treat in a simple way all of the divergent cases resulting from Re β≤−1 as well.
 
3
The usual notation for integrals defined in the sense of Cauchy principal value (CPV) is \({\mbox{\footnotesize $-$}}\hspace{-1em}\int^{b}_{a} f(x)\,dx\). In this work, we denote them by \(\int^{b}_{a}f(x)\, dx\) for simplicity. For the definition and properties of Cauchy principal value integrals, see [2, 3], or [6], for example.
 
4
We can write the expansions in (2.1) in the “simpler” form
$$u(x)\sim\sum^{\infty}_{s=0}c_s \,(x-a)^{\gamma'_s} \quad\mbox{\textit{as}}\ x\to a+, \qquad u(x)\sim\sum ^{\infty}_{s=0}d_s\,(b-x)^{\delta'_s} \quad \mbox{\textit{as}}\ x\to b-, $$
ordering the \(\gamma'_{s}\) and the \(\delta'_{s}\) as in (2.2), and allowing now one of the \(\gamma'_{s}\) and/or one of the \(\delta'_{s}\) to be equal to −1. However, this complicates the statements of our results. Therefore, we have chosen to separate these two exponents as in (2.1).
 
5
In this case, I[G] is simply the Cauchy principal value of \(\int^{b}_{a} G(x)\,dx\).
 
Literature
1.
go back to reference Capobianco, M.R., Mastroianni, G., Russo, M.G.: Pointwise and uniform approximation of the finite Hilbert transform. In: Approximation and Optimization, vol. I, Cluj-Napoca, 1996, pp. 45–66. Transilvania, Cluj-Napoca (1997) Capobianco, M.R., Mastroianni, G., Russo, M.G.: Pointwise and uniform approximation of the finite Hilbert transform. In: Approximation and Optimization, vol. I, Cluj-Napoca, 1996, pp. 45–66. Transilvania, Cluj-Napoca (1997)
2.
go back to reference Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, New York (1984) MATH Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, New York (1984) MATH
3.
go back to reference Evans, G.: Practical Numerical Integration. Wiley, New York (1993) MATH Evans, G.: Practical Numerical Integration. Wiley, New York (1993) MATH
4.
go back to reference Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (1980). 4th printing (1983) MATH Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (1980). 4th printing (1983) MATH
5.
6.
go back to reference Kythe, P.K., Schäferkotter, M.R.: Handbook of Computational Methods for Integration. Chapman & Hall/CRC Press, New York (2005) MATH Kythe, P.K., Schäferkotter, M.R.: Handbook of Computational Methods for Integration. Chapman & Hall/CRC Press, New York (2005) MATH
7.
go back to reference Ladopoulos, E.G.: Singular Integral Equations: Linear and Non-linear Theory and Its Applications in Science and Engineering. Springer, Berlin (2000) MATH Ladopoulos, E.G.: Singular Integral Equations: Linear and Non-linear Theory and Its Applications in Science and Engineering. Springer, Berlin (2000) MATH
8.
go back to reference Lifanov, I.K.: An instance of numerical solution of integral equations with singularities in the periodic case. Differ. Equ. 42(9), 1134–1342 (2006). Translated from Differ. Uravn. 42, 1263–1271 (2006) MathSciNetCrossRef Lifanov, I.K.: An instance of numerical solution of integral equations with singularities in the periodic case. Differ. Equ. 42(9), 1134–1342 (2006). Translated from Differ. Uravn. 42, 1263–1271 (2006) MathSciNetCrossRef
9.
go back to reference Lifanov, I.K., Poltavskii, L.N.: On the numerical solution of hypersingular and singular integral equations on the circle. Differ. Equ. 39(8), 1175–1197 (2003). Translated from Differ. Uravn. 39, 1115–1136 (2003) MathSciNetMATHCrossRef Lifanov, I.K., Poltavskii, L.N.: On the numerical solution of hypersingular and singular integral equations on the circle. Differ. Equ. 39(8), 1175–1197 (2003). Translated from Differ. Uravn. 39, 1115–1136 (2003) MathSciNetMATHCrossRef
10.
go back to reference Lifanov, I.K., Poltavskii, L.N., Vainikko, G.M.: Hypersingular Integral Equations and Their Applications. CRC Press, New York (2004) MATH Lifanov, I.K., Poltavskii, L.N., Vainikko, G.M.: Hypersingular Integral Equations and Their Applications. CRC Press, New York (2004) MATH
11.
go back to reference Mastroanni, G., Occorsio, D.: Interlacing properties of the zeros of the orthogonal polynomials and approximation of the Hilbert transform. Comput. Math. Appl. 30, 155–168 (1995) MathSciNetCrossRef Mastroanni, G., Occorsio, D.: Interlacing properties of the zeros of the orthogonal polynomials and approximation of the Hilbert transform. Comput. Math. Appl. 30, 155–168 (1995) MathSciNetCrossRef
12.
go back to reference Mastronardi, N., Occorsio, D.: Some numerical algorithms to evaluate Hadamard finite-part integrals. J. Comput. Appl. Math. 70, 75–93 (1996) MathSciNetMATHCrossRef Mastronardi, N., Occorsio, D.: Some numerical algorithms to evaluate Hadamard finite-part integrals. J. Comput. Appl. Math. 70, 75–93 (1996) MathSciNetMATHCrossRef
14.
go back to reference Navot, I.: An extension of the Euler–Maclaurin summation formula to functions with a branch singularity. J. Math. Phys. 40, 271–276 (1961) MathSciNetMATH Navot, I.: An extension of the Euler–Maclaurin summation formula to functions with a branch singularity. J. Math. Phys. 40, 271–276 (1961) MathSciNetMATH
15.
go back to reference Navot, I.: A further extension of the Euler–Maclaurin summation formula. J. Math. Phys. 41, 155–163 (1962) MATH Navot, I.: A further extension of the Euler–Maclaurin summation formula. J. Math. Phys. 41, 155–163 (1962) MATH
16.
go back to reference Rivlin, T.J.: Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, 2nd edn. Wiley, New York (1990) MATH Rivlin, T.J.: Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, 2nd edn. Wiley, New York (1990) MATH
17.
go back to reference Sidi, A.: Comparison of some numerical quadrature formulas for weakly singular periodic Fredholm integral equations. Computing 43, 159–170 (1989) MathSciNetMATHCrossRef Sidi, A.: Comparison of some numerical quadrature formulas for weakly singular periodic Fredholm integral equations. Computing 43, 159–170 (1989) MathSciNetMATHCrossRef
18.
go back to reference Sidi, A.: Practical Extrapolation Methods: Theory and Applications. Cambridge Monographs on Applied and Computational Mathematics, vol. 10. Cambridge University Press, Cambridge (2003) MATHCrossRef Sidi, A.: Practical Extrapolation Methods: Theory and Applications. Cambridge Monographs on Applied and Computational Mathematics, vol. 10. Cambridge University Press, Cambridge (2003) MATHCrossRef
19.
go back to reference Sidi, A.: Euler–Maclaurin expansions for integrals with endpoint singularities: a new perspective. Numer. Math. 98, 371–387 (2004) MathSciNetMATHCrossRef Sidi, A.: Euler–Maclaurin expansions for integrals with endpoint singularities: a new perspective. Numer. Math. 98, 371–387 (2004) MathSciNetMATHCrossRef
21.
go back to reference Sidi, A.: Euler–Maclaurin expansions for integrals with arbitrary algebraic-logarithmic endpoint singularities. Constr. Approx. (2011). Published online: September 28. doi:10.1007/s00365-011-9140-0 Sidi, A.: Euler–Maclaurin expansions for integrals with arbitrary algebraic-logarithmic endpoint singularities. Constr. Approx. (2011). Published online: September 28. doi:10.​1007/​s00365-011-9140-0
22.
go back to reference Sidi, A., Israeli, M.: Quadrature methods for periodic singular and weakly singular Fredholm integral equations. J. Sci. Comput. 3, 201–231 (1988). Originally appeared as Technion Computer Science Dept. Technical Report No. 384 (1985) and also as ICASE Report No. 86-50 (1986) MathSciNetMATHCrossRef Sidi, A., Israeli, M.: Quadrature methods for periodic singular and weakly singular Fredholm integral equations. J. Sci. Comput. 3, 201–231 (1988). Originally appeared as Technion Computer Science Dept. Technical Report No. 384 (1985) and also as ICASE Report No. 86-50 (1986) MathSciNetMATHCrossRef
23.
go back to reference Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 3rd edn. Springer, New York (2002) MATH Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 3rd edn. Springer, New York (2002) MATH
24.
go back to reference Wu, J., Dai, Z., Zhang, X.: The superconvergence of the composite midpoint rule for the finite-part integral. J. Comput. Appl. Math. 233, 1954–1968 (2010) MathSciNetMATHCrossRef Wu, J., Dai, Z., Zhang, X.: The superconvergence of the composite midpoint rule for the finite-part integral. J. Comput. Appl. Math. 233, 1954–1968 (2010) MathSciNetMATHCrossRef
25.
go back to reference Wu, J., Sun, W.: The superconvergence of Newton–Cotes rules for the Hadamard finite-part integral on an interval. Numer. Math. 109, 143–165 (2008) MathSciNetMATHCrossRef Wu, J., Sun, W.: The superconvergence of Newton–Cotes rules for the Hadamard finite-part integral on an interval. Numer. Math. 109, 143–165 (2008) MathSciNetMATHCrossRef
Metadata
Title
Compact Numerical Quadrature Formulas for Hypersingular Integrals and Integral Equations
Author
Avram Sidi
Publication date
01-01-2013
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2013
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-012-9610-y

Other articles of this Issue 1/2013

Journal of Scientific Computing 1/2013 Go to the issue

Premium Partner