Skip to main content
Top

2013 | OriginalPaper | Chapter

26. Comparative Environmental Impact Assessment of Nuclear-Based Hydrogen Production via Mg–Cl and Cu–Cl Thermochemical Water Splitting Cycles

Authors : Ahmet Ozbilen, Ibrahim Dincer, Marc A. Rosen

Published in: Causes, Impacts and Solutions to Global Warming

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The environmental impacts of nuclear-based hydrogen production processes are evaluated and compared, considering magnesium–chlorine (Mg–Cl) and copper–chlorine (Cu–Cl) thermochemical water decomposition cycles and using life cycle analysis. Variations of environmental impacts (acidification potential and global warming potential) with hydrogen production plant lifetime are reported. An artificial neural network model is used to develop the results. Relations between environmental impacts and economic factors are also presented using the social cost of carbon concept. The results show that the Cu–Cl thermochemical cycle has lower acidification and global warming potentials per unit mass of hydrogen produced compared to the Mg–Cl thermochemical cycle due to its lower electrical work requirement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dincer I (2007) Environmental and sustainability aspects of hydrogen and fuel cell systems. Int J Energy Res 31:29–55CrossRef Dincer I (2007) Environmental and sustainability aspects of hydrogen and fuel cell systems. Int J Energy Res 31:29–55CrossRef
2.
go back to reference Dincer I, Balta MT (2011) Potential thermochemical and hybrid cycles for nuclear-based hydrogen production. Int J Energy Res 35:123–127CrossRef Dincer I, Balta MT (2011) Potential thermochemical and hybrid cycles for nuclear-based hydrogen production. Int J Energy Res 35:123–127CrossRef
3.
go back to reference Naterer GF, Suppiah S, Stolberg L, Lewis M, Ferrandon M, Wang Z, Dincer I, Gabriel K, Rosen MA, Secnik E, Easton EB, Trevani L, Pioro I, Tremaine P, Lvov S, Jiang J, Rizvi G, Ikeda BM, Lu L, Kaye M, Smith WR, Mostaghimi J, Spekkens P, Fowler M, Avsec J (2011) Clean hydrogen production with the Cu-Cl cycle—progress of international consortium, II: simulations, thermochemical data and materials. Int J Hydrogen Energ 36:15486–15501CrossRef Naterer GF, Suppiah S, Stolberg L, Lewis M, Ferrandon M, Wang Z, Dincer I, Gabriel K, Rosen MA, Secnik E, Easton EB, Trevani L, Pioro I, Tremaine P, Lvov S, Jiang J, Rizvi G, Ikeda BM, Lu L, Kaye M, Smith WR, Mostaghimi J, Spekkens P, Fowler M, Avsec J (2011) Clean hydrogen production with the Cu-Cl cycle—progress of international consortium, II: simulations, thermochemical data and materials. Int J Hydrogen Energ 36:15486–15501CrossRef
4.
go back to reference Dincer I (2012) Green methods for hydrogen production. Int J Hydrogen Energ 37:1954–1971CrossRef Dincer I (2012) Green methods for hydrogen production. Int J Hydrogen Energ 37:1954–1971CrossRef
5.
go back to reference Muradov NZ, Veziroglu TN (2005) From hydrocarbon to hydrogen-carbon to hydrogen economy. Int J Hydrogen Energ 30:225–237CrossRef Muradov NZ, Veziroglu TN (2005) From hydrocarbon to hydrogen-carbon to hydrogen economy. Int J Hydrogen Energ 30:225–237CrossRef
6.
go back to reference Funk JE (2001) Thermochemical hydrogen production: past and present. Int J Hydrogen Energ 26:185–190CrossRef Funk JE (2001) Thermochemical hydrogen production: past and present. Int J Hydrogen Energ 26:185–190CrossRef
7.
go back to reference Wang ZL, Naterer GF, Gabriel K (2008) Multiphase reactor scale-up for Cu-Cl thermochemical hydrogen production cycle. Int J Hydrogen Energ 33:6934–6946CrossRef Wang ZL, Naterer GF, Gabriel K (2008) Multiphase reactor scale-up for Cu-Cl thermochemical hydrogen production cycle. Int J Hydrogen Energ 33:6934–6946CrossRef
8.
go back to reference Rosen MA, Naterer GF, Chukwu CC, Sadhankar R, Suppiah S (2012) Nuclear-based hydrogen production with a thermochemical copper-chlorine cycle and supercritical water reactor: equipment scale-up and process simulation. Int J Energy Res 36:456–465CrossRef Rosen MA, Naterer GF, Chukwu CC, Sadhankar R, Suppiah S (2012) Nuclear-based hydrogen production with a thermochemical copper-chlorine cycle and supercritical water reactor: equipment scale-up and process simulation. Int J Energy Res 36:456–465CrossRef
9.
go back to reference Ozbilen A, Dincer I, Rosen MA (2011) Environmental evaluation of hydrogen production via thermochemical water splitting using the Cu-Cl cycle: a parametric study. Int J Hydrogen Energ 36:9514–9528CrossRef Ozbilen A, Dincer I, Rosen MA (2011) Environmental evaluation of hydrogen production via thermochemical water splitting using the Cu-Cl cycle: a parametric study. Int J Hydrogen Energ 36:9514–9528CrossRef
10.
go back to reference Ozbilen A, Dincer I, Rosen MA (2012) Life cycle assessment of hydrogen production via thermochemical water splitting using multi-step Cu-Cl cycles. J Clean Prod 33:202–216CrossRef Ozbilen A, Dincer I, Rosen MA (2012) Life cycle assessment of hydrogen production via thermochemical water splitting using multi-step Cu-Cl cycles. J Clean Prod 33:202–216CrossRef
11.
go back to reference Lewis MA, Masin JG, O’Hare PA (2009) Evaluation of alternative thermochemical cycles-Part I. The methodology. Int J Hydrogen Energ 34:4115–4124CrossRef Lewis MA, Masin JG, O’Hare PA (2009) Evaluation of alternative thermochemical cycles-Part I. The methodology. Int J Hydrogen Energ 34:4115–4124CrossRef
12.
go back to reference Orhan MF, Dincer I, Rosen MA (2011) Design of systems for hydrogen production based on the Cu-Cl thermochemical water decomposition cycle: configurations and performance. Int J Hydrogen Energ 36:11309–11320CrossRef Orhan MF, Dincer I, Rosen MA (2011) Design of systems for hydrogen production based on the Cu-Cl thermochemical water decomposition cycle: configurations and performance. Int J Hydrogen Energ 36:11309–11320CrossRef
13.
go back to reference Balta MT, Dincer I, Hepbasli A (2012) Energy and exergy analyses of magnesium-chlorine (Mg-Cl) thermochemical cycle. Int J Hydrogen Energ 37:4855–4862CrossRef Balta MT, Dincer I, Hepbasli A (2012) Energy and exergy analyses of magnesium-chlorine (Mg-Cl) thermochemical cycle. Int J Hydrogen Energ 37:4855–4862CrossRef
14.
go back to reference Elder R, Allen R (2009) Nuclear heat for hydrogen production: coupling a very high/high temperature reactor to a hydrogen production plant. Prog Nucl Energy 51:500–525CrossRef Elder R, Allen R (2009) Nuclear heat for hydrogen production: coupling a very high/high temperature reactor to a hydrogen production plant. Prog Nucl Energy 51:500–525CrossRef
15.
go back to reference Ball M, Wietschel M (2009) The future of hydrogen—opportunities and challenges. Int J Hydrogen Energ 34:615–627CrossRef Ball M, Wietschel M (2009) The future of hydrogen—opportunities and challenges. Int J Hydrogen Energ 34:615–627CrossRef
16.
go back to reference Urbaniec K, Ahrer W (2010) Conference report: 18th World Hydrogen Energy Conference. J Clean Prod 18:S123–S125CrossRef Urbaniec K, Ahrer W (2010) Conference report: 18th World Hydrogen Energy Conference. J Clean Prod 18:S123–S125CrossRef
17.
go back to reference Ozbilen A, Dincer I, Naterer GF, Aydin M (2012) Role of hydrogen storage in renewable energy management for Ontario. Int J Hydrogen Energ 37:7343–7354CrossRef Ozbilen A, Dincer I, Naterer GF, Aydin M (2012) Role of hydrogen storage in renewable energy management for Ontario. Int J Hydrogen Energ 37:7343–7354CrossRef
18.
go back to reference Dufour J, Serrano DP, Galvez JL, Moreno J, Garcia C (2009) Life cycle assessment of processes for hydrogen production: environmental feasibility and reduction of greenhouse gases emissions. Int J Hydrogen Energ 34:1370–1376CrossRef Dufour J, Serrano DP, Galvez JL, Moreno J, Garcia C (2009) Life cycle assessment of processes for hydrogen production: environmental feasibility and reduction of greenhouse gases emissions. Int J Hydrogen Energ 34:1370–1376CrossRef
19.
go back to reference Boehm R, Chen Y, Earl B, Hsieh S, Moujaes S (2003) H2 Technology Survey. UNLV Program, University of Nevada Las Vegas, Center for Energy Research, November 25. Available from www.unlv.edu Boehm R, Chen Y, Earl B, Hsieh S, Moujaes S (2003) H2 Technology Survey. UNLV Program, University of Nevada Las Vegas, Center for Energy Research, November 25. Available from www.​unlv.​edu
20.
go back to reference Pilavachi PA, Chatzinapagi AI, Spyropoulou AI (2009) Evaluation of hydrogen production methods using the analytic hierarchy process. Int J Hydrogen Energ 34:5294–5303CrossRef Pilavachi PA, Chatzinapagi AI, Spyropoulou AI (2009) Evaluation of hydrogen production methods using the analytic hierarchy process. Int J Hydrogen Energ 34:5294–5303CrossRef
22.
go back to reference Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326CrossRef Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326CrossRef
23.
go back to reference Utgikar V, Thiesen T (2006) Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy. Int J Hydrogen Energ 31:939–944CrossRef Utgikar V, Thiesen T (2006) Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy. Int J Hydrogen Energ 31:939–944CrossRef
24.
go back to reference Herring S, Gougar H (2011) High-temperature electrolysis for hydrogen production from nuclear energy, INL, Idaho National Laboratory, Publication: 05-GA50193-19 Herring S, Gougar H (2011) High-temperature electrolysis for hydrogen production from nuclear energy, INL, Idaho National Laboratory, Publication: 05-GA50193-19
25.
go back to reference Balta MT, Dincer I, Hepbasli A (2009) Thermodynamic assessment of geothermal energy use in hydrogen production. Int J Hydrogen Energ 34:2925–2939CrossRef Balta MT, Dincer I, Hepbasli A (2009) Thermodynamic assessment of geothermal energy use in hydrogen production. Int J Hydrogen Energ 34:2925–2939CrossRef
26.
go back to reference Curran MA (ed) (2012) Life cycle assessment handbook: a guide for environmentally sustainable products. Wiley, Hoboken, NJ Curran MA (ed) (2012) Life cycle assessment handbook: a guide for environmentally sustainable products. Wiley, Hoboken, NJ
27.
go back to reference International Organization for Standardization (ISO) (1997) ISO 14040, Environmental management - life cycle assessment – principles and framework International Organization for Standardization (ISO) (1997) ISO 14040, Environmental management - life cycle assessment – principles and framework
28.
go back to reference International Organization for Standardization (ISO) (1998) ISO 14041, Environmental management - life cycle assessment – goal and scope definition and inventory analysis International Organization for Standardization (ISO) (1998) ISO 14041, Environmental management - life cycle assessment – goal and scope definition and inventory analysis
29.
go back to reference International Organization for Standardization (ISO) (2000a) ISO 14042, Environmental management - life cycle assessment – life cycle impact assessment International Organization for Standardization (ISO) (2000a) ISO 14042, Environmental management - life cycle assessment – life cycle impact assessment
30.
go back to reference International Organization for Standardization (ISO) (2000b) ISO 14043, Environmental management - life cycle assessment – life cycle interpretation International Organization for Standardization (ISO) (2000b) ISO 14043, Environmental management - life cycle assessment – life cycle interpretation
31.
go back to reference International Organization for Standardization (ISO) (2006) ISO 14044, Environmental management - life cycle assessment – requirements and guidelines International Organization for Standardization (ISO) (2006) ISO 14044, Environmental management - life cycle assessment – requirements and guidelines
32.
go back to reference Curran MA (2000) Life cycle assessment: an international experience. Environ Progress 19:65–71CrossRef Curran MA (2000) Life cycle assessment: an international experience. Environ Progress 19:65–71CrossRef
33.
go back to reference Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A de, Oers L van, Wegener Sleeswijk A, Suh S, Udo de Haes HA, Bruijn H de, Duin R van, Huijbregts MAJ (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. Kluwer Academic Publishers, Dordrecht. Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A de, Oers L van, Wegener Sleeswijk A, Suh S, Udo de Haes HA, Bruijn H de, Duin R van, Huijbregts MAJ (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. Kluwer Academic Publishers, Dordrecht.
34.
go back to reference Goedkoop M, Demmers M, Collignon M (1996) The eco-indicator 95 manual for designers, national reuse of waste research programme, Netherlands Goedkoop M, Demmers M, Collignon M (1996) The eco-indicator 95 manual for designers, national reuse of waste research programme, Netherlands
35.
go back to reference Steen B (1999) A systematic approach to environmental priority strategies in product development (EPS). Version 2000 – general system characteristics. CPM report 1999:4, Center for Environmental Assessment, Chalmers University of Technology, Gothenburg, Sweden Steen B (1999) A systematic approach to environmental priority strategies in product development (EPS). Version 2000 – general system characteristics. CPM report 1999:4, Center for Environmental Assessment, Chalmers University of Technology, Gothenburg, Sweden
36.
go back to reference Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330CrossRef Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330CrossRef
37.
go back to reference Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Cambridge University Press, Cambridge, UK Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Cambridge University Press, Cambridge, UK
38.
go back to reference Spath PL, Mann MK (2001) Life cycle assessment of hydrogen production via natural gas steam reforming. National Renewable Energy Laboratory (NREL), Golden, CO, TP-570-27637 Spath PL, Mann MK (2001) Life cycle assessment of hydrogen production via natural gas steam reforming. National Renewable Energy Laboratory (NREL), Golden, CO, TP-570-27637
39.
go back to reference Spath PL, Mann MK (2004) Life cycle assessment of hydrogen production via wind/electrolysis. Technical report. NREL, National Renewable Energy Laboratory, Golden, CO, MP-560-3504 Spath PL, Mann MK (2004) Life cycle assessment of hydrogen production via wind/electrolysis. Technical report. NREL, National Renewable Energy Laboratory, Golden, CO, MP-560-3504
40.
go back to reference Marquevich M, Sonnemann GW, Castells F, Montane D (2002) Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock. Green Chem 4:414–423CrossRef Marquevich M, Sonnemann GW, Castells F, Montane D (2002) Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock. Green Chem 4:414–423CrossRef
41.
go back to reference Koroneos C, Dompros A, Roumbas G, Moussipoulos N (2004) Life cycle assessment of hydrogen fuel production processes. Int J Hydrogen Energ 29:1443–1450CrossRef Koroneos C, Dompros A, Roumbas G, Moussipoulos N (2004) Life cycle assessment of hydrogen fuel production processes. Int J Hydrogen Energ 29:1443–1450CrossRef
42.
go back to reference Utgikar V, Ward B (2006) Life cycle assessment of ISPRA Mark 9 thermochemical cycle for nuclear hydrogen production. J Chem Technol Biotechnol 81:1753–1759CrossRef Utgikar V, Ward B (2006) Life cycle assessment of ISPRA Mark 9 thermochemical cycle for nuclear hydrogen production. J Chem Technol Biotechnol 81:1753–1759CrossRef
43.
go back to reference Solli C, Stromman AH, Herrtwich EG (2006) Fission or fossil: life cycle assessment of hydrogen production. Proc IEEE 94:1785–1794CrossRef Solli C, Stromman AH, Herrtwich EG (2006) Fission or fossil: life cycle assessment of hydrogen production. Proc IEEE 94:1785–1794CrossRef
44.
go back to reference Koroneos C, Dompros A, Roumbas G (2008) Hydrogen production via biomass gasification: a life cycle assessment approach. Chem Eng Process 47:1267–1274 Koroneos C, Dompros A, Roumbas G (2008) Hydrogen production via biomass gasification: a life cycle assessment approach. Chem Eng Process 47:1267–1274
45.
go back to reference Djomo SN, Humbert S, Blumberga D (2008) Life cycle assessment of hydrogen produced potato steam peels. Int J Hydrogen Energ 33:3067–3072CrossRef Djomo SN, Humbert S, Blumberga D (2008) Life cycle assessment of hydrogen produced potato steam peels. Int J Hydrogen Energ 33:3067–3072CrossRef
46.
go back to reference Lubis LL, Dincer I, Rosen MA (2010) Life cycle assessment of hydrogen production using nuclear energy: an application based on thermochemical water splitting. J Energy Resour Technol 132:210041–210046CrossRef Lubis LL, Dincer I, Rosen MA (2010) Life cycle assessment of hydrogen production using nuclear energy: an application based on thermochemical water splitting. J Energy Resour Technol 132:210041–210046CrossRef
47.
go back to reference Chouai A, Laugier S, Richon D (2002) Modeling of thermodynamic properties using neural networks application to refrigerants. Fluid Phase Equilibr 199:53–62CrossRef Chouai A, Laugier S, Richon D (2002) Modeling of thermodynamic properties using neural networks application to refrigerants. Fluid Phase Equilibr 199:53–62CrossRef
48.
go back to reference Kizilkan O (2011) Thermodynamic analysis of variable speed refrigeration system using artificial neural networks. Expert Sys Appl 38:11686–11692CrossRef Kizilkan O (2011) Thermodynamic analysis of variable speed refrigeration system using artificial neural networks. Expert Sys Appl 38:11686–11692CrossRef
49.
go back to reference Simpson MF, Herrmann SD, Boyle BD (2006) A hybrid thermochemical electrolytic process for hydrogen production based on the reverse Deacon reaction. Int J Hydrogen Energ 31:1241–1246CrossRef Simpson MF, Herrmann SD, Boyle BD (2006) A hybrid thermochemical electrolytic process for hydrogen production based on the reverse Deacon reaction. Int J Hydrogen Energ 31:1241–1246CrossRef
50.
go back to reference Motupally D, Mah DT, Freire FJ, Weidner JW (1998) Recycling chlorine from hydrogen chloride. Electrochem Soc Interf 7:32–36 Motupally D, Mah DT, Freire FJ, Weidner JW (1998) Recycling chlorine from hydrogen chloride. Electrochem Soc Interf 7:32–36
51.
go back to reference Petri MC, Yildiz B, Klickman AE (2006) US Work on technical and economic aspects of electrolytic, thermochemical, and hybrid processes for hydrogen production at temperatures below 550 °C. Int J Nuclear Hydrog Prod Appl 1:79–91 Petri MC, Yildiz B, Klickman AE (2006) US Work on technical and economic aspects of electrolytic, thermochemical, and hybrid processes for hydrogen production at temperatures below 550 °C. Int J Nuclear Hydrog Prod Appl 1:79–91
52.
go back to reference Pioro IL, Duffey RB (2007) Heat transfer and hydraulic resistance at supercritical pressures in power engineering applications. ASME, New YorkCrossRef Pioro IL, Duffey RB (2007) Heat transfer and hydraulic resistance at supercritical pressures in power engineering applications. ASME, New YorkCrossRef
53.
go back to reference Akdag U, Komur MA, Ozguc AF (2009) Estimation of heat transfer in oscillating annular flow using artificial neural Networks. Adv Eng Softw 40:864–870CrossRefMATH Akdag U, Komur MA, Ozguc AF (2009) Estimation of heat transfer in oscillating annular flow using artificial neural Networks. Adv Eng Softw 40:864–870CrossRefMATH
54.
go back to reference Hope CW (2006) The social cost of carbon: what does it actually depend on? Clim Policy 6:565–572 Hope CW (2006) The social cost of carbon: what does it actually depend on? Clim Policy 6:565–572
Metadata
Title
Comparative Environmental Impact Assessment of Nuclear-Based Hydrogen Production via Mg–Cl and Cu–Cl Thermochemical Water Splitting Cycles
Authors
Ahmet Ozbilen
Ibrahim Dincer
Marc A. Rosen
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-7588-0_26