Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2013

01-10-2013

Comparison of Material Models for Spring Back Prediction in an Automotive Panel Using Finite Element Method

Authors: Xiongqi Peng, Shaoqing Shi, Kangkang Hu

Published in: Journal of Materials Engineering and Performance | Issue 10/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Springback is a crucial factor in sheet metal forming process. An accurate prediction of springback is the premise for its control. An elasto-plastic constitutive model that can fully reflect anisotropic character of sheet metal has a crucial influence in the forming simulation. The forming process simulation and springback prediction of an automobile body panel is implemented by using JSTAMP/LS-DYNA with the Yoshida-Uemori, the 3-parameter Barlat and transversely anisotropic elasto-plastic model, respectively. Simulation predictions on spingback from the three constitutive models are compared with experiment measurements to demonstrate the effectiveness and accuracy of the Yoshida-Uemori model in characterizing the anisotropic material behavior of sheet metal during forming. With an accurate prediction of springback, it can provide design guideline for the practical application in mold design with springback compensation and to achieve an accurate forming.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Hu, Z. Marciniak, and J. Duncan, Mechanics of Sheet Metal Forming, 2nd ed., Butterworth-Heinemann, Woburn, 2002 J. Hu, Z. Marciniak, and J. Duncan, Mechanics of Sheet Metal Forming, 2nd ed., Butterworth-Heinemann, Woburn, 2002
2.
go back to reference H. Livatyali, G.L. Kinzel, and T. Altan, Computer Aided Die Design of Straight Flanging Using Approximate Numerical Analysis, J. Mater. Process. Technol., 2003, 142, p 532–543CrossRef H. Livatyali, G.L. Kinzel, and T. Altan, Computer Aided Die Design of Straight Flanging Using Approximate Numerical Analysis, J. Mater. Process. Technol., 2003, 142, p 532–543CrossRef
3.
go back to reference W. Gan and R.H. Wagoner, Die Design Method for Sheet Springback, Int. J. Mech. Sci., 2004, 46, p 1097–1113CrossRef W. Gan and R.H. Wagoner, Die Design Method for Sheet Springback, Int. J. Mech. Sci., 2004, 46, p 1097–1113CrossRef
4.
go back to reference R. Lingbeek, J. Huetink, S. Ohnimus, M. Petzoldt, and J. Weiher, The Development of a Finite Elements Based Springback Compensation Tool for Sheet Metal Products, J. Mater. Process. Technol., 2005, 169, p 115–125CrossRef R. Lingbeek, J. Huetink, S. Ohnimus, M. Petzoldt, and J. Weiher, The Development of a Finite Elements Based Springback Compensation Tool for Sheet Metal Products, J. Mater. Process. Technol., 2005, 169, p 115–125CrossRef
5.
go back to reference M. Samuel, Experimental and Numerical Prediction of Springback and Side Wall Curl in U-Bending of Anisotropic Sheet Metals, J. Mater. Process. Technol., 2000, 105, p 382–393CrossRef M. Samuel, Experimental and Numerical Prediction of Springback and Side Wall Curl in U-Bending of Anisotropic Sheet Metals, J. Mater. Process. Technol., 2000, 105, p 382–393CrossRef
6.
go back to reference V. Viswanathan, B. Kinsey, and J. Cao, Experimental Implementation of Neural Network Springback Control for Sheet Metal Forming, J. Manuf. Sci. Eng.-Trans. ASME, 2003, 125, p 141–147CrossRef V. Viswanathan, B. Kinsey, and J. Cao, Experimental Implementation of Neural Network Springback Control for Sheet Metal Forming, J. Manuf. Sci. Eng.-Trans. ASME, 2003, 125, p 141–147CrossRef
7.
go back to reference A. Andersson, Numerical and Experimental Evaluation of Springback in Advanced High Strength Steel, J. Mater. Eng. Perform., 2007, 16, p 301–307CrossRef A. Andersson, Numerical and Experimental Evaluation of Springback in Advanced High Strength Steel, J. Mater. Eng. Perform., 2007, 16, p 301–307CrossRef
8.
go back to reference K. Kuwabara, Advances in Experiments on Metal Sheets and Tubes in Support of Constitutive Modeling and Forming Simulations, Int. J. Plast., 2007, 23, p 385–419CrossRef K. Kuwabara, Advances in Experiments on Metal Sheets and Tubes in Support of Constitutive Modeling and Forming Simulations, Int. J. Plast., 2007, 23, p 385–419CrossRef
9.
go back to reference U. Borah, S. Venugopal, R. Nagarajan, P.V. Sivaprasad, S. Venugopal, and B. Raj, Estimation of Springback in Double-Curvature Forming of Plates: Experimental Evaluation and Process Modeling, Int. J. Mech. Sci., 2008, 50, p 704–718CrossRef U. Borah, S. Venugopal, R. Nagarajan, P.V. Sivaprasad, S. Venugopal, and B. Raj, Estimation of Springback in Double-Curvature Forming of Plates: Experimental Evaluation and Process Modeling, Int. J. Mech. Sci., 2008, 50, p 704–718CrossRef
10.
go back to reference P. Chen, M. Koc, and M.L. Wenner, Experimental Investigation of Springback Variation in Forming of High Strength Steels, J. Manuf. Sci. Eng.-Trans. ASME, 2008, 130, p 041006CrossRef P. Chen, M. Koc, and M.L. Wenner, Experimental Investigation of Springback Variation in Forming of High Strength Steels, J. Manuf. Sci. Eng.-Trans. ASME, 2008, 130, p 041006CrossRef
11.
go back to reference X.J. Fu, J.J. Li, and G. Xu, Experimental Study on Springback of High Strength Sheet Metals, Mater. Res. Innov., 2011, 15, p S475–S477CrossRef X.J. Fu, J.J. Li, and G. Xu, Experimental Study on Springback of High Strength Sheet Metals, Mater. Res. Innov., 2011, 15, p S475–S477CrossRef
12.
go back to reference P. Xue, T.X. Yu, and E. Chu, Theoretical Prediction of the Springback of Metal Sheets After a Double-Curvature Forming Operation, J. Mater. Process. Technol., 1999, 90, p 65–71CrossRef P. Xue, T.X. Yu, and E. Chu, Theoretical Prediction of the Springback of Metal Sheets After a Double-Curvature Forming Operation, J. Mater. Process. Technol., 1999, 90, p 65–71CrossRef
13.
go back to reference K. Anokye-Siribor and U.P. Singh, A New Analytical Model for Pressbrake Forming Using In-Process Identification of Material Characteristics, J. Mater. Process. Technol., 2000, 99, p 103–112CrossRef K. Anokye-Siribor and U.P. Singh, A New Analytical Model for Pressbrake Forming Using In-Process Identification of Material Characteristics, J. Mater. Process. Technol., 2000, 99, p 103–112CrossRef
14.
go back to reference J. Chakrabarty, W.B. Lee, and K.C. Chan, An Exact Solution for the Elastic/Plastic Bending of Anisotropic Sheet Metal Under Conditions of Plane Strain, Int. J. Mech. Sci., 2001, 43, p 1871–1880CrossRef J. Chakrabarty, W.B. Lee, and K.C. Chan, An Exact Solution for the Elastic/Plastic Bending of Anisotropic Sheet Metal Under Conditions of Plane Strain, Int. J. Mech. Sci., 2001, 43, p 1871–1880CrossRef
15.
go back to reference T. Buranathiti and J. Cao, An Effective Analytical Model for Springback Prediction in Straight Flanging Processes, Int. J. Mater. Prod. Technol., 2004, 21, p 137–153CrossRef T. Buranathiti and J. Cao, An Effective Analytical Model for Springback Prediction in Straight Flanging Processes, Int. J. Mater. Prod. Technol., 2004, 21, p 137–153CrossRef
16.
go back to reference B. Heller and M. Kleiner, Semi-analytical Process Modelling and Simulation of Air Bending, J. Strain Anal. Eng., 2006, 41, p 57–80CrossRef B. Heller and M. Kleiner, Semi-analytical Process Modelling and Simulation of Air Bending, J. Strain Anal. Eng., 2006, 41, p 57–80CrossRef
17.
go back to reference D.J. Zhang, Z.S. Cui, X.Y. Ruan, and Y.Q. Li, An Analytical Model for Predicting Springback and Side Wall Curl of Sheet After U-bending, Comput. Mater. Sci., 2007, 38, p 707–715CrossRef D.J. Zhang, Z.S. Cui, X.Y. Ruan, and Y.Q. Li, An Analytical Model for Predicting Springback and Side Wall Curl of Sheet After U-bending, Comput. Mater. Sci., 2007, 38, p 707–715CrossRef
18.
go back to reference Y.H. Moon, D.W. Kim, and C.J. Van Tyne, Analytical Model for Prediction of Sidewall Curl During Stretch-Bend Sheet Metal Forming, Int. J. Mech. Sci., 2008, 50, p 666–675CrossRef Y.H. Moon, D.W. Kim, and C.J. Van Tyne, Analytical Model for Prediction of Sidewall Curl During Stretch-Bend Sheet Metal Forming, Int. J. Mech. Sci., 2008, 50, p 666–675CrossRef
19.
go back to reference H.K. Yi, D.W. Kim, C.J. Van Tyne, and Y.H. Moon, Analytical Prediction of Springback Based on Residual Differential Strain During Sheet Metal Bending, J. Mech. Eng. Sci., 2008, 222, p 117–129CrossRef H.K. Yi, D.W. Kim, C.J. Van Tyne, and Y.H. Moon, Analytical Prediction of Springback Based on Residual Differential Strain During Sheet Metal Bending, J. Mech. Eng. Sci., 2008, 222, p 117–129CrossRef
20.
go back to reference S. Kobyashi, S. Oh, and T. Altan, Metal Forming and the Finite Element Method, Oxford University Press, Oxford, 1989 S. Kobyashi, S. Oh, and T. Altan, Metal Forming and the Finite Element Method, Oxford University Press, Oxford, 1989
21.
go back to reference K.P. Li, W.P. Carden, and R.H. Wagoner, Simulation of Springback, Int. J. Mech. Sci., 2002, 44, p 103–122CrossRef K.P. Li, W.P. Carden, and R.H. Wagoner, Simulation of Springback, Int. J. Mech. Sci., 2002, 44, p 103–122CrossRef
22.
go back to reference L. Taylor, J. Cao, A.P. Karafillis, and M.C. Boyce, Numerical Simulations of Sheet Metal Forming, J. Mater. Process. Technol., 1995, 50, p 168–179CrossRef L. Taylor, J. Cao, A.P. Karafillis, and M.C. Boyce, Numerical Simulations of Sheet Metal Forming, J. Mater. Process. Technol., 1995, 50, p 168–179CrossRef
23.
go back to reference I.N. Chou and C. Hung, Finite Element Analysis and Optimization on Springback Reduction, Int. J. Mach. Tool Manuf., 1999, 39, p 517–536CrossRef I.N. Chou and C. Hung, Finite Element Analysis and Optimization on Springback Reduction, Int. J. Mach. Tool Manuf., 1999, 39, p 517–536CrossRef
24.
go back to reference L. Papeleux and J.P. Ponthot, Finite Element Simulation of Springback in Sheet Metal Forming, J. Mater. Process. Technol., 2002, 125, p 785–791CrossRef L. Papeleux and J.P. Ponthot, Finite Element Simulation of Springback in Sheet Metal Forming, J. Mater. Process. Technol., 2002, 125, p 785–791CrossRef
25.
go back to reference T. Buranathiti, J. Cao, W. Chen, W.L. Baghdasaryan, and Z.C. Xia, Approaches for Model Validation: Methodology and Illustration on a Sheet Metal Flanging Process, J. Manuf. Sci. Eng.-Trans. ASME, 2006, 128, p 588–597CrossRef T. Buranathiti, J. Cao, W. Chen, W.L. Baghdasaryan, and Z.C. Xia, Approaches for Model Validation: Methodology and Illustration on a Sheet Metal Flanging Process, J. Manuf. Sci. Eng.-Trans. ASME, 2006, 128, p 588–597CrossRef
26.
go back to reference S.K. Panthi, N. Ramakrishnan, K.K. Pathak, and J.S. Chouhan, An Analysis of Springback in Sheet Metal Bending Using Finite Element Method (FEM), J. Mater. Process. Technol., 2007, 186, p 120–124CrossRef S.K. Panthi, N. Ramakrishnan, K.K. Pathak, and J.S. Chouhan, An Analysis of Springback in Sheet Metal Bending Using Finite Element Method (FEM), J. Mater. Process. Technol., 2007, 186, p 120–124CrossRef
27.
go back to reference M. Firat, B. Kaftanoglu, and O. Eser, Sheet Metal Forming Analyses with an Emphasis on the Springback Deformation, J. Mater. Process. Technol., 2008, 196, p 135–148CrossRef M. Firat, B. Kaftanoglu, and O. Eser, Sheet Metal Forming Analyses with an Emphasis on the Springback Deformation, J. Mater. Process. Technol., 2008, 196, p 135–148CrossRef
28.
go back to reference S.L. Zang, C. Guo, S. Thuillier, and M.G. Lee, A Model of One-Surface Cyclic Plasticity and Its Application to Springback Prediction, Int. J. Mech. Sci., 2011, 53, p 425–435CrossRef S.L. Zang, C. Guo, S. Thuillier, and M.G. Lee, A Model of One-Surface Cyclic Plasticity and Its Application to Springback Prediction, Int. J. Mech. Sci., 2011, 53, p 425–435CrossRef
29.
go back to reference H. Lim, M.G. Lee, J.H. Sung, and R.H. Wagoner, Time-Dependent Springback of Advanced High Strength Steels, Int. J. Plast., 2012, 29, p 42–59CrossRef H. Lim, M.G. Lee, J.H. Sung, and R.H. Wagoner, Time-Dependent Springback of Advanced High Strength Steels, Int. J. Plast., 2012, 29, p 42–59CrossRef
30.
go back to reference S. Chatti and N. Hermi, The Effect of Non-linear Recovery on Springback Prediction, Comput. Struct., 2011, 89, p 1367–1377CrossRef S. Chatti and N. Hermi, The Effect of Non-linear Recovery on Springback Prediction, Comput. Struct., 2011, 89, p 1367–1377CrossRef
31.
go back to reference P.A. Eggertsen and K. Mattiasson, On Constitutive Modeling for Springback Analysis, Int. J. Mech. Sci., 2010, 52, p 804–818CrossRef P.A. Eggertsen and K. Mattiasson, On Constitutive Modeling for Springback Analysis, Int. J. Mech. Sci., 2010, 52, p 804–818CrossRef
32.
go back to reference S. Bouvier, J.L. Alves, M.C. Oliveira, and L.F. Menezes, Modelling of Anisotropic Work-Hardening Behaviour of Metallic Materials Subjected to Strain-Path Changes, Comput. Mater. Sci., 2005, 32, p 301–315CrossRef S. Bouvier, J.L. Alves, M.C. Oliveira, and L.F. Menezes, Modelling of Anisotropic Work-Hardening Behaviour of Metallic Materials Subjected to Strain-Path Changes, Comput. Mater. Sci., 2005, 32, p 301–315CrossRef
33.
go back to reference R.K. Verma and A. Haldar, Effect of Normal Anisotropy on Springback, J. Mater. Process. Technol., 2007, 190, p 300–304CrossRef R.K. Verma and A. Haldar, Effect of Normal Anisotropy on Springback, J. Mater. Process. Technol., 2007, 190, p 300–304CrossRef
34.
go back to reference J.W. Lee, M.G. Lee, and F. Barlat, Finite Element Modeling Using Homogeneous Anisotropic Hardening and Application to Spring-Back Prediction, Int. J. Plast., 2012, 29, p 13–41CrossRef J.W. Lee, M.G. Lee, and F. Barlat, Finite Element Modeling Using Homogeneous Anisotropic Hardening and Application to Spring-Back Prediction, Int. J. Plast., 2012, 29, p 13–41CrossRef
35.
go back to reference F. Yoshida and T. Uemori, A Model of Large-Strain Cyclic Plasticity Describing the Bauschinger Effect and Work Hardening Stagnation, Int. J. Plast., 2002, 18, p 61–686 F. Yoshida and T. Uemori, A Model of Large-Strain Cyclic Plasticity Describing the Bauschinger Effect and Work Hardening Stagnation, Int. J. Plast., 2002, 18, p 61–686
36.
go back to reference F. Yoshida and T. Uemori, A Model of Large-Strain Cyclic Plasticity and Its Application to Springback Simulation, Int. J. Mech. Sci., 2003, 45, p 1687–1702CrossRef F. Yoshida and T. Uemori, A Model of Large-Strain Cyclic Plasticity and Its Application to Springback Simulation, Int. J. Mech. Sci., 2003, 45, p 1687–1702CrossRef
Metadata
Title
Comparison of Material Models for Spring Back Prediction in an Automotive Panel Using Finite Element Method
Authors
Xiongqi Peng
Shaoqing Shi
Kangkang Hu
Publication date
01-10-2013
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2013
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-013-0600-5

Other articles of this Issue 10/2013

Journal of Materials Engineering and Performance 10/2013 Go to the issue

Premium Partners