Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2016

04-08-2016

Comparison of Mechanical Properties Between PE80 and PE100 Pipe Materials

Authors: Yi Zhang, P.-Y. Ben Jar

Published in: Journal of Materials Engineering and Performance | Issue 10/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mechanical properties, including yield stress, relaxation behavior, moduli (elastic modulus at the strain of 0.5% and strain hardening modulus at strains above 70%), viscous stress, and quasi-static stress, are compared between polyethylene (PE) pipes that are made of PE80 and PE100 resins. The mechanical properties are measured using D-split tensile test on modified notched pipe ring specimens. The comparison includes the influence of strain rate (by the change of crosshead speed) on the yield strength and influence of pre-strain on the relaxation behavior and the modulus values. A two-stage approach is used to characterize the influence of pre-strain on the moduli, to ensure that viscous recovery from the first-stage of the test, to introduce the pre-strain, does not affect the modulus measurement from the second-stage test. The results show that elastic modulus, yield stress, strain hardening modulus, viscous stress, and quasi-static stress for PE100 are higher than those for PE80, but PE80 shows higher resistance to stress relaxation. The results also show that with the increase in the pre-strain level, the elastic modulus drops but the strain hardening modulus remains relatively constant.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N. Kiass, R. Khelif, L. Boulanouar, and K. Chaoui, Experimental Approach to Mechanical Property Variability Through a High-density Polyethylene Gas Pipe Wall, J. Appl. Polym. Sci., 2005, 97(1), p 272–281CrossRef N. Kiass, R. Khelif, L. Boulanouar, and K. Chaoui, Experimental Approach to Mechanical Property Variability Through a High-density Polyethylene Gas Pipe Wall, J. Appl. Polym. Sci., 2005, 97(1), p 272–281CrossRef
2.
go back to reference Plastics Piping and Ducting Systems—Determination of the Long-term Hydrostatic Strength of Thermoplastics Materials in Pipe form by Extrapolation, 9080, ISO, 2012 Plastics Piping and Ducting Systems—Determination of the Long-term Hydrostatic Strength of Thermoplastics Materials in Pipe form by Extrapolation, 9080, ISO, 2012
3.
go back to reference A. Adib, C. Domínguez, J. Rodríguez, C. Martín, and R.A. García, The Effect of Microstructure on the Slow Crack Growth Resistance in Polyethylene Resins, Polym. Eng. Sci., 2015, 55(5), p 1018–1023CrossRef A. Adib, C. Domínguez, J. Rodríguez, C. Martín, and R.A. García, The Effect of Microstructure on the Slow Crack Growth Resistance in Polyethylene Resins, Polym. Eng. Sci., 2015, 55(5), p 1018–1023CrossRef
4.
go back to reference L.M. Graice, M.Y.A. Younan, and S.A.R. Naga, Experimental investigation into the fracture toughness of polyethylene pipe material, J. Press. Vessel Technol., 2004, 127(1), p 70–75CrossRef L.M. Graice, M.Y.A. Younan, and S.A.R. Naga, Experimental investigation into the fracture toughness of polyethylene pipe material, J. Press. Vessel Technol., 2004, 127(1), p 70–75CrossRef
5.
go back to reference A. Frank, G. Pinter, and R.W. Lang, Fracture Mechanics Lifetime Prediction of PE 80 and PE 100 Pipes Under Complex Loading Conditions, Proceedings Pipes XV, Vancouver, Canada, 2010 A. Frank, G. Pinter, and R.W. Lang, Fracture Mechanics Lifetime Prediction of PE 80 and PE 100 Pipes Under Complex Loading Conditions, Proceedings Pipes XV, Vancouver, Canada, 2010
6.
go back to reference A. Redhead, A. Frank, and G. Pinter, Investigation of Slow Crack Growth Initiation in Polyethylene Pipe Grades with Accelerated Cyclic Tests, Eng. Fract. Mech., 2013, 101, p 2–9CrossRef A. Redhead, A. Frank, and G. Pinter, Investigation of Slow Crack Growth Initiation in Polyethylene Pipe Grades with Accelerated Cyclic Tests, Eng. Fract. Mech., 2013, 101, p 2–9CrossRef
7.
go back to reference P. Yayla and Y. Bilgin, Squeeze-Off of Polyethylene Pressure Pipes: Experimental Analysis, Polym. Test., 2007, 26(1), p 132–141CrossRef P. Yayla and Y. Bilgin, Squeeze-Off of Polyethylene Pressure Pipes: Experimental Analysis, Polym. Test., 2007, 26(1), p 132–141CrossRef
8.
go back to reference Y. Zhang and P.Y.B. Jar, Quantitative Assessment of Deformation-Induced Damage in Polyethylene pressure Pipe, Polym. Test., 2015, 47, p 42–50CrossRef Y. Zhang and P.Y.B. Jar, Quantitative Assessment of Deformation-Induced Damage in Polyethylene pressure Pipe, Polym. Test., 2015, 47, p 42–50CrossRef
9.
go back to reference R. Rafiee, Apparent Hoop Tensile Strength Prediction of Glass Fiber-Reinforced Polyester Pipes, J. Compos. Mater., 2012, p 0021998312447209 R. Rafiee, Apparent Hoop Tensile Strength Prediction of Glass Fiber-Reinforced Polyester Pipes, J. Compos. Mater., 2012, p 0021998312447209
10.
go back to reference P. Y. B. Jar, 2014, “Degradation of Mechanical Properties for Polyethylene by Small-Deformation Damage,” ASME 2014 Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, p V06BT06A040–V006BT006A040 P. Y. B. Jar, 2014, “Degradation of Mechanical Properties for Polyethylene by Small-Deformation Damage,” ASME 2014 Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, p V06BT06A040–V006BT006A040
11.
go back to reference P.Y.B. Jar, Effect of Tensile Loading History on Mechanical Properties for Polyethylene, Polym. Eng. Sci., 2015, 55(9), p 2002–2010CrossRef P.Y.B. Jar, Effect of Tensile Loading History on Mechanical Properties for Polyethylene, Polym. Eng. Sci., 2015, 55(9), p 2002–2010CrossRef
12.
go back to reference P.Y.B. Jar, Transition of Neck Appearance in Polyethylene and Effect of the Associated Strain Rate on the Damage Generation, Polym. Eng. Sci., 2014, 54(8), p 1871–1878CrossRef P.Y.B. Jar, Transition of Neck Appearance in Polyethylene and Effect of the Associated Strain Rate on the Damage Generation, Polym. Eng. Sci., 2014, 54(8), p 1871–1878CrossRef
13.
go back to reference S. Muhammad and P.Y.B. Jar, Effect of Aspect Ratio on Large Deformation and Necking of Polyethylene, J. Mater. Sci, 2011, 46(4), p 1110–1123CrossRef S. Muhammad and P.Y.B. Jar, Effect of Aspect Ratio on Large Deformation and Necking of Polyethylene, J. Mater. Sci, 2011, 46(4), p 1110–1123CrossRef
14.
go back to reference K. Hong, A. Rastogi, and G. Strobl, A Model Treating Tensile Deformation of Semicrystalline Polymers: Quasi-Static Stress−Strain Relationship and Viscous Stress Determined for a Sample of Polyethylene, Macromolecules, 2004, 37(26), p 10165–10173CrossRef K. Hong, A. Rastogi, and G. Strobl, A Model Treating Tensile Deformation of Semicrystalline Polymers: Quasi-Static Stress−Strain Relationship and Viscous Stress Determined for a Sample of Polyethylene, Macromolecules, 2004, 37(26), p 10165–10173CrossRef
15.
go back to reference S. Hobeika, Y. Men, and G. Strobl, Temperature and Strain Rate Independence of Critical Strains in Polyethylene and Poly(ethylene-co-vinyl acetate), Macromolecules, 2000, 33(5), p 1827–1833CrossRef S. Hobeika, Y. Men, and G. Strobl, Temperature and Strain Rate Independence of Critical Strains in Polyethylene and Poly(ethylene-co-vinyl acetate), Macromolecules, 2000, 33(5), p 1827–1833CrossRef
16.
go back to reference B. Na, Q. Zhang, Q. Fu, Y. Men, K. Hong, and G. Strobl, Viscous-Force-Dominated Tensile Deformation Behavior of Oriented Polyethylene, Macromolecules, 2006, 39(7), p 2584–2591CrossRef B. Na, Q. Zhang, Q. Fu, Y. Men, K. Hong, and G. Strobl, Viscous-Force-Dominated Tensile Deformation Behavior of Oriented Polyethylene, Macromolecules, 2006, 39(7), p 2584–2591CrossRef
17.
go back to reference A. Dasari and R.D.K. Misra, On the Strain Rate Sensitivity of High Density Polyethylene and Polypropylenes, Mater. Sci. Eng., A, 2003, 358(1–2), p 356–371CrossRef A. Dasari and R.D.K. Misra, On the Strain Rate Sensitivity of High Density Polyethylene and Polypropylenes, Mater. Sci. Eng., A, 2003, 358(1–2), p 356–371CrossRef
18.
go back to reference P.J. DesLauriers, M.P. McDaniel, D.C. Rohlfing, R.K. Krishnaswamy, S.J. Secora, E.A. Benham, P.L. Maeger, A.R. Wolfe, A.M. Sukhadia, and B.B. Beaulieu, A Comparative Study of Multimodal vs. Bimodal Polyethylene Pipe Resins for PE-100 Applications, Polym. Eng. Sci., 2005, 45(9), p 1203–1213CrossRef P.J. DesLauriers, M.P. McDaniel, D.C. Rohlfing, R.K. Krishnaswamy, S.J. Secora, E.A. Benham, P.L. Maeger, A.R. Wolfe, A.M. Sukhadia, and B.B. Beaulieu, A Comparative Study of Multimodal vs. Bimodal Polyethylene Pipe Resins for PE-100 Applications, Polym. Eng. Sci., 2005, 45(9), p 1203–1213CrossRef
19.
go back to reference X. Lu, R. Qian, and N. Brown, The Effect of Crystallinity on Fracture and Yielding of Polyethylenes, Polymer, 1995, 36(22), p 4239–4244CrossRef X. Lu, R. Qian, and N. Brown, The Effect of Crystallinity on Fracture and Yielding of Polyethylenes, Polymer, 1995, 36(22), p 4239–4244CrossRef
20.
go back to reference R. Popli and L. Mandelkern, Influence of Structural and Morphological Factors on the Mechanical Properties of the Polyethylenes, J. Polym. Sci. Part B: Polym. Phys., 1987, 25(3), p 441–483CrossRef R. Popli and L. Mandelkern, Influence of Structural and Morphological Factors on the Mechanical Properties of the Polyethylenes, J. Polym. Sci. Part B: Polym. Phys., 1987, 25(3), p 441–483CrossRef
21.
go back to reference S. Humbert, O. Lame, and G. Vigier, Polyethylene Yielding Behaviour: What is Behind the Correlation Between Yield Stress and Crystallinity?, Polymer, 2009, 50(15), p 3755–3761CrossRef S. Humbert, O. Lame, and G. Vigier, Polyethylene Yielding Behaviour: What is Behind the Correlation Between Yield Stress and Crystallinity?, Polymer, 2009, 50(15), p 3755–3761CrossRef
22.
go back to reference Y. Lu, W. Yang, K. Zhang, and M.-B. Yang, Stress Relaxation Behavior of High Density Polyethylene (HDPE) Articles Molded by Gas-Assisted Injection Molding, Polym. Test., 2010, 29(7), p 866–871CrossRef Y. Lu, W. Yang, K. Zhang, and M.-B. Yang, Stress Relaxation Behavior of High Density Polyethylene (HDPE) Articles Molded by Gas-Assisted Injection Molding, Polym. Test., 2010, 29(7), p 866–871CrossRef
23.
go back to reference N. Sun, M. Wenzel, and A. Adams, Morphology of High-density Polyethylene Pipes Stored Under Hydrostatic Pressure at Elevated Temperature, Polymer (United Kingdom), 2014, 55(16), p 3792–3800 N. Sun, M. Wenzel, and A. Adams, Morphology of High-density Polyethylene Pipes Stored Under Hydrostatic Pressure at Elevated Temperature, Polymer (United Kingdom), 2014, 55(16), p 3792–3800
24.
25.
go back to reference R.N. Haward, Strain Hardening of High Density Polyethylene, J. Polym. Sci. Part B Polym. Phys., 2007, 45(9), p 1090–1099CrossRef R.N. Haward, Strain Hardening of High Density Polyethylene, J. Polym. Sci. Part B Polym. Phys., 2007, 45(9), p 1090–1099CrossRef
26.
go back to reference R.N. Haward, Strain Hardening of Thermoplastics, Macromolecules, 1993, 26(22), p 5860–5869CrossRef R.N. Haward, Strain Hardening of Thermoplastics, Macromolecules, 1993, 26(22), p 5860–5869CrossRef
27.
go back to reference R.A.C. Deblieck, D.J.M. Van Beek, K. Remerie, and I.M. Ward, Failure Mechanisms in Polyolefines: The Role of Crazing, Shear Yielding and the Entanglement Network, Polymer, 2011, 52(14), p 2979–2990CrossRef R.A.C. Deblieck, D.J.M. Van Beek, K. Remerie, and I.M. Ward, Failure Mechanisms in Polyolefines: The Role of Crazing, Shear Yielding and the Entanglement Network, Polymer, 2011, 52(14), p 2979–2990CrossRef
28.
go back to reference B.D. Lauterwasser and E.J. Kramer, Microscopic Mechanisms and Mechanics of Craze Growth and Fracture, Philos. Mag. A, 1979, 39(4), p 469–495CrossRef B.D. Lauterwasser and E.J. Kramer, Microscopic Mechanisms and Mechanics of Craze Growth and Fracture, Philos. Mag. A, 1979, 39(4), p 469–495CrossRef
29.
go back to reference E. J. Kramer, Microscopic and molecular fundamentals of crazing, Crazing in Polymers, Springer, Berlin, 1983, p 1–56 E. J. Kramer, Microscopic and molecular fundamentals of crazing, Crazing in Polymers, Springer, Berlin, 1983, p 1–56
30.
go back to reference L. Kurelec, M. Teeuwen, H. Schoffeleers, and R. Deblieck, Strain Hardening Modulus as a Measure of Environmental Stress Crack Resistance of High Density Polyethylene, Polymer, 2005, 46(17), p 6369–6379CrossRef L. Kurelec, M. Teeuwen, H. Schoffeleers, and R. Deblieck, Strain Hardening Modulus as a Measure of Environmental Stress Crack Resistance of High Density Polyethylene, Polymer, 2005, 46(17), p 6369–6379CrossRef
31.
go back to reference Polyethylene (PE) Materials for Piping Systems —Determination of Strain Hardening Modulus in Relation to Slow Crack Growth—Test Method, 18488, ISO, 2015 Polyethylene (PE) Materials for Piping Systems —Determination of Strain Hardening Modulus in Relation to Slow Crack Growth—Test Method, 18488, ISO, 2015
32.
go back to reference Y. Zhang and P.Y.B. Jar, Effects of Crosshead Speed on the Quasi-Static Stress-Strain Relationship of Polyethylene (PE) Pipes, J. Press. Vessel Technol., 2016. doi:10.1115/1.4033777 Y. Zhang and P.Y.B. Jar, Effects of Crosshead Speed on the Quasi-Static Stress-Strain Relationship of Polyethylene (PE) Pipes, J. Press. Vessel Technol., 2016. doi:10.​1115/​1.​4033777
Metadata
Title
Comparison of Mechanical Properties Between PE80 and PE100 Pipe Materials
Authors
Yi Zhang
P.-Y. Ben Jar
Publication date
04-08-2016
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2016
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2274-2

Other articles of this Issue 10/2016

Journal of Materials Engineering and Performance 10/2016 Go to the issue

Premium Partners