Skip to main content
Top
Published in: Journal of Engineering Thermophysics 1/2024

01-03-2024

Comparison of Two Numerical Models of Convection in the Earth’s Mantle

Authors: V. V. Chervov, G. G. Chernykh, I. B. Palymskiy

Published in: Journal of Engineering Thermophysics | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The three-dimensional convection in the Earth’s mantle is studied with a well-known mathematical model, which includes the Navier–Stokes equations in the Oberbeck–Boussinesq and geodynamic approximations. Two numerical models of convection are considered. The first is based on the implicit finite-difference schemes of splitting over spatial variables with correction of pressure. The second numerical model is based on the spectral difference method. The numerical models constructed were compared on model problems of convection in a rectangular parallelepiped in a liquid with constant viscosity, corresponding to the convection in the entire mantle of the Earth [1]. The calculation results are in good agreement with the test results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Busse, F.H., Christensen, U., Clever, R., Cserepes, L., Gable, C., Giannandrea, E., Guillou, L., Houseman, G., Nataf, H.-C., Ogawa, M., Parmentier, M., Sotin, C., and Travis, B., 3D Convection at Infinite Prandtl Number in Cartesian Geometry—A Benchmark Comparison, Geophys. Astrophys. Fluid Dyn., 1993, vol. 75, pp. 39–59.ADSCrossRef Busse, F.H., Christensen, U., Clever, R., Cserepes, L., Gable, C., Giannandrea, E., Guillou, L., Houseman, G., Nataf, H.-C., Ogawa, M., Parmentier, M., Sotin, C., and Travis, B., 3D Convection at Infinite Prandtl Number in Cartesian Geometry—A Benchmark Comparison, Geophys. Astrophys. Fluid Dyn., 1993, vol. 75, pp. 39–59.ADSCrossRef
2.
go back to reference Bobrov, A.M. and Trubitsyn, V.P., Times of Restructuring of Mantle Flows Beneath Continents, Fiz. Zemli, 1995, vol. 7, pp. 5–13. Bobrov, A.M. and Trubitsyn, V.P., Times of Restructuring of Mantle Flows Beneath Continents, Fiz. Zemli, 1995, vol. 7, pp. 5–13.
3.
go back to reference Ismail-zade, A.T., Korotkii, A.I., Naimark, B.M, and Tsepelev, I.A., Numerical Simulation of Three-Dimensional Viscous Flows with Gravitational and Thermal Effects, Comput. Math. Math. Phys., 2001, vol. 41, no. 9, pp. 1331–1345.MathSciNet Ismail-zade, A.T., Korotkii, A.I., Naimark, B.M, and Tsepelev, I.A., Numerical Simulation of Three-Dimensional Viscous Flows with Gravitational and Thermal Effects, Comput. Math. Math. Phys., 2001, vol. 41, no. 9, pp. 1331–1345.MathSciNet
4.
go back to reference Chervov, V.V., Numerical Modeling of 3D Problems of Convection in the Earth Mantle, Using Vorticity and Vector Potential, Vych. Tekhnol., 2002, vol. 7, no. 1, pp. 114–125.MathSciNet Chervov, V.V., Numerical Modeling of 3D Problems of Convection in the Earth Mantle, Using Vorticity and Vector Potential, Vych. Tekhnol., 2002, vol. 7, no. 1, pp. 114–125.MathSciNet
5.
go back to reference Chervov, V.V., Numerical Modeling of 3D Problems of Convection in the Earth Mantle Using a Sequence of Meshes, Vych. Tekhnol., 2002, vol. 7, no. 3, pp. 85–92.MathSciNet Chervov, V.V., Numerical Modeling of 3D Problems of Convection in the Earth Mantle Using a Sequence of Meshes, Vych. Tekhnol., 2002, vol. 7, no. 3, pp. 85–92.MathSciNet
6.
go back to reference Tychkov, S.A., Chervov, V.V., and Chernykh, G.G., Numerical Modeling of Thermal Convection in the Earth’s Mantle, Dokl. Earth Sci., 2005, vol. 402, no. 4, pp. 596–601. Tychkov, S.A., Chervov, V.V., and Chernykh, G.G., Numerical Modeling of Thermal Convection in the Earth’s Mantle, Dokl. Earth Sci., 2005, vol. 402, no. 4, pp. 596–601.
7.
go back to reference Tychkov, S.A., Chervov, V.V., and Chernykh, G.G., Numerical Modeling of 3D Convection in the Earth Mantle, Russ. J. Numer. An. Math. Model., 2005, vol. 20, no. 5, pp. 483–500.CrossRef Tychkov, S.A., Chervov, V.V., and Chernykh, G.G., Numerical Modeling of 3D Convection in the Earth Mantle, Russ. J. Numer. An. Math. Model., 2005, vol. 20, no. 5, pp. 483–500.CrossRef
8.
go back to reference Tychkov, S.A., Chervov, V.V., and Chernykh, G.G., A Numerical Model of Three-Dimensional Convection, Izv., Phys. Solid Earth, 2005, vol. 41, no. 5, pp. 383–398. Tychkov, S.A., Chervov, V.V., and Chernykh, G.G., A Numerical Model of Three-Dimensional Convection, Izv., Phys. Solid Earth, 2005, vol. 41, no. 5, pp. 383–398.
9.
go back to reference Chervov, V.V., Modeling of 3D Convection in the Earth Mantle Using Implicit Method of Splitting in Physical Processes, Vych. Tekhnol., 2006, vol. 11, no. 4, pp. 73–86. Chervov, V.V., Modeling of 3D Convection in the Earth Mantle Using Implicit Method of Splitting in Physical Processes, Vych. Tekhnol., 2006, vol. 11, no. 4, pp. 73–86.
10.
go back to reference Chervov, V.V., Modeling of 3D Convection in the Earth Mantle Using Implicit Method of Weak (Artificial) Compressibility, Vych. Tekhnol., 2009, vol. 14, no. 3, pp. 86–92. Chervov, V.V., Modeling of 3D Convection in the Earth Mantle Using Implicit Method of Weak (Artificial) Compressibility, Vych. Tekhnol., 2009, vol. 14, no. 3, pp. 86–92.
11.
go back to reference Chervov, V.V., Chernykh, G.G., Bushenkova, N.A., and Kulakov, I.Yu., Numerical Modeling of Three-Dimensional Convection in the Upper Mantle of the Earth Beneath Eurasia Lithosphere, Vych. Tekhnol., 2014, vol. 19, no. 5, pp. 101–114. Chervov, V.V., Chernykh, G.G., Bushenkova, N.A., and Kulakov, I.Yu., Numerical Modeling of Three-Dimensional Convection in the Upper Mantle of the Earth Beneath Eurasia Lithosphere, Vych. Tekhnol., 2014, vol. 19, no. 5, pp. 101–114.
12.
go back to reference Chervov, V.V. and Chernykh, G.G., Numerical Modeling of Three-Dimensional Convection in the Upper Mantle of the Earth Beneath Eurasia Lithosphere, J. Eng. Therm., 2014, vol. 23, no.2, pp. 105–111.CrossRef Chervov, V.V. and Chernykh, G.G., Numerical Modeling of Three-Dimensional Convection in the Upper Mantle of the Earth Beneath Eurasia Lithosphere, J. Eng. Therm., 2014, vol. 23, no.2, pp. 105–111.CrossRef
13.
go back to reference Bobrov, A.M. and Baranov, A.A., The Mantle Convection Model with Non-Newtonian Rheology and Phase Transitions: The Flow Structure and Stress Fields, Izv., Phys. Solid Earth, 2016, vol. 52, no. 1, pp. 129–143.ADSCrossRef Bobrov, A.M. and Baranov, A.A., The Mantle Convection Model with Non-Newtonian Rheology and Phase Transitions: The Flow Structure and Stress Fields, Izv., Phys. Solid Earth, 2016, vol. 52, no. 1, pp. 129–143.ADSCrossRef
14.
go back to reference Heister, T., Dannberg, J., Gassmöller, R., and Bangerth, W., High Accuracy Mantle Convection through Modern Numerical Methods. II: Realistic Models and Problems, Geophys. J. Int., 2017, vol. 210, no. 2, pp. 833–851.ADSCrossRef Heister, T., Dannberg, J., Gassmöller, R., and Bangerth, W., High Accuracy Mantle Convection through Modern Numerical Methods. II: Realistic Models and Problems, Geophys. J. Int., 2017, vol. 210, no. 2, pp. 833–851.ADSCrossRef
15.
go back to reference Chervov, V.V. and Chernykh, G.G., Numerical Modeling of Convection in the Zone of Spreading and Subduction, J. Eng. Therm., 2019, vol. 28, no. 1, pp. 14–25.CrossRef Chervov, V.V. and Chernykh, G.G., Numerical Modeling of Convection in the Zone of Spreading and Subduction, J. Eng. Therm., 2019, vol. 28, no. 1, pp. 14–25.CrossRef
16.
go back to reference Trubitsyn, A.P. and Trubitsyn, V.P., Temperature Distribution in the Earth’s Mantle, Dokl. Earth Sci., 2020, vol. 495, no. 2, pp. 905–909. Trubitsyn, A.P. and Trubitsyn, V.P., Temperature Distribution in the Earth’s Mantle, Dokl. Earth Sci., 2020, vol. 495, no. 2, pp. 905–909.
17.
go back to reference Chuvaev, A.V., Baranov, A.A., and Bobrov, A.M., Numerical Modelling of Mantle Convection in the Earth Using Cloud Technologies, Comput. Technol., 2020, vol. 25, no. 2, pp. 103–117. Chuvaev, A.V., Baranov, A.A., and Bobrov, A.M., Numerical Modelling of Mantle Convection in the Earth Using Cloud Technologies, Comput. Technol., 2020, vol. 25, no. 2, pp. 103–117.
18.
go back to reference Trubitsyn, A.P. and Trubitsyn, V.P., The Heat Balance in the Earth, Dokl. Earth Sci., 2021, vol. 500, no. 1, pp. 746–750. Trubitsyn, A.P. and Trubitsyn, V.P., The Heat Balance in the Earth, Dokl. Earth Sci., 2021, vol. 500, no. 1, pp. 746–750.
19.
go back to reference Chervov, V.V., Bushenkova, N.A., and Chernykh, G.G., Tectonic Depressions on the East-European and Siberian Platforms: Numerical Modeling of Convection Beneath the Eurasian Continent, Geodin. Tektonofiz., 2021, vol. 12, no. 1, pp. 84–99; https://doi.org/10.5800/GT-2021-12-1-0514CrossRef Chervov, V.V., Bushenkova, N.A., and Chernykh, G.G., Tectonic Depressions on the East-European and Siberian Platforms: Numerical Modeling of Convection Beneath the Eurasian Continent, Geodin. Tektonofiz., 2021, vol. 12, no. 1, pp. 84–99; https://​doi.​org/​10.​5800/​GT-2021-12-1-0514CrossRef
20.
go back to reference Chervov, V.V. and Chernykh, G.G., On Mathematical Modeling of Convection in the Upper Mantle of Earth, J. Eng. Therm., 2023, vol. 32, no. 1, pp. 36–48.CrossRef Chervov, V.V. and Chernykh, G.G., On Mathematical Modeling of Convection in the Upper Mantle of Earth, J. Eng. Therm., 2023, vol. 32, no. 1, pp. 36–48.CrossRef
21.
go back to reference Dobretsov, N.L., Kirdyashkin, A.G., and Kirdyashkin, A.A., Glubinnaya geodinamika (Depth Geodynamics), 2nd ed., Novosibirsk: SO RAN, 2001. Dobretsov, N.L., Kirdyashkin, A.G., and Kirdyashkin, A.A., Glubinnaya geodinamika (Depth Geodynamics), 2nd ed., Novosibirsk: SO RAN, 2001.
22.
go back to reference DeLuca, E.E., Werne, J., Rosner, R., and Cattaneo, F., Numerical Simulation of Soft and Hard Turbulence: Preliminary Results for Two-Dimensional Convection, Phys. Rev. Lett., 1990, vol. 64, no. 20, pp. 2370–2373.ADSCrossRef DeLuca, E.E., Werne, J., Rosner, R., and Cattaneo, F., Numerical Simulation of Soft and Hard Turbulence: Preliminary Results for Two-Dimensional Convection, Phys. Rev. Lett., 1990, vol. 64, no. 20, pp. 2370–2373.ADSCrossRef
23.
go back to reference Cortese, T. and Balachandar, S., Vortical Nature of Thermal Plumes in Turbulent Convection, Phys. Fluids. A, 1993, vol. 5, no. 12, pp. 3226–3232.ADSCrossRef Cortese, T. and Balachandar, S., Vortical Nature of Thermal Plumes in Turbulent Convection, Phys. Fluids. A, 1993, vol. 5, no. 12, pp. 3226–3232.ADSCrossRef
24.
go back to reference Curry, J.H., Herring, J.R., Loncaric, J., and Orszag, S.A., Order and Disorder in Two- and Three-Dimensional Benard Convection, J. Fluid Mech., 1984, vol. 147, pp. 1–38.ADSCrossRef Curry, J.H., Herring, J.R., Loncaric, J., and Orszag, S.A., Order and Disorder in Two- and Three-Dimensional Benard Convection, J. Fluid Mech., 1984, vol. 147, pp. 1–38.ADSCrossRef
25.
go back to reference Gershuni, G.Z. and Zhukhovitskii, E.M., Convective Stability of Incompressible Fluids, Jerusalem: Israel Program for Scientific Translations, 1976. Gershuni, G.Z. and Zhukhovitskii, E.M., Convective Stability of Incompressible Fluids, Jerusalem: Israel Program for Scientific Translations, 1976.
26.
go back to reference Palymskiy, I.B., Gertsenshtein, S.Ya., and Sibgatullin, I.N., Intense Turbulent Convection in a Horizontal Plane Liquid Layer, Izv. Atmosph. Oceanic Phys., 2008, vol. 44, no. 1, pp. 72–82.ADSCrossRef Palymskiy, I.B., Gertsenshtein, S.Ya., and Sibgatullin, I.N., Intense Turbulent Convection in a Horizontal Plane Liquid Layer, Izv. Atmosph. Oceanic Phys., 2008, vol. 44, no. 1, pp. 72–82.ADSCrossRef
27.
go back to reference Palymskiy, I., Turbulentnaya konvektsiya Releya–Benara. Chislennyi metod i resultaty raschetov, Germany: LAP, 2011. Palymskiy, I., Turbulentnaya konvektsiya Releya–Benara. Chislennyi metod i resultaty raschetov, Germany: LAP, 2011.
28.
go back to reference Kerr, R.M., Rayleigh Number Scaling in Numerical Convection, J. Fluid Mech., 1996, vol. 310, pp. 139–179.ADSCrossRef Kerr, R.M., Rayleigh Number Scaling in Numerical Convection, J. Fluid Mech., 1996, vol. 310, pp. 139–179.ADSCrossRef
29.
go back to reference Thual, O., Zero-Prandtl-Number Convection, J. Fluid Mech., 1992, vol. 240, pp. 229–258.ADSCrossRef Thual, O., Zero-Prandtl-Number Convection, J. Fluid Mech., 1992, vol. 240, pp. 229–258.ADSCrossRef
30.
go back to reference Palymskiy, I.B., Fomin, P.A., and Hieronymus, H., Rayleigh–Benard Convection in a Chemical Equilibrium Gas (Simulation of Surface Detonation Wave Initiation), Appl. Math. Model., 2008, vol. 32, no. 5, pp. 660–676.CrossRef Palymskiy, I.B., Fomin, P.A., and Hieronymus, H., Rayleigh–Benard Convection in a Chemical Equilibrium Gas (Simulation of Surface Detonation Wave Initiation), Appl. Math. Model., 2008, vol. 32, no. 5, pp. 660–676.CrossRef
31.
go back to reference Trim, S.J., Butler, S.L., and Spiteri, R.J., Benchmarking Multiphysics Software for Mantle Convection, Comput. Geosci., 2021, vol. 154, p. 104797.CrossRef Trim, S.J., Butler, S.L., and Spiteri, R.J., Benchmarking Multiphysics Software for Mantle Convection, Comput. Geosci., 2021, vol. 154, p. 104797.CrossRef
Metadata
Title
Comparison of Two Numerical Models of Convection in the Earth’s Mantle
Authors
V. V. Chervov
G. G. Chernykh
I. B. Palymskiy
Publication date
01-03-2024
Publisher
Pleiades Publishing
Published in
Journal of Engineering Thermophysics / Issue 1/2024
Print ISSN: 1810-2328
Electronic ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232824010041

Other articles of this Issue 1/2024

Journal of Engineering Thermophysics 1/2024 Go to the issue

Premium Partners