Skip to main content
Erschienen in: Journal of Engineering Thermophysics 1/2024

01.03.2024

Comparison of Two Numerical Models of Convection in the Earth’s Mantle

verfasst von: V. V. Chervov, G. G. Chernykh, I. B. Palymskiy

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The three-dimensional convection in the Earth’s mantle is studied with a well-known mathematical model, which includes the Navier–Stokes equations in the Oberbeck–Boussinesq and geodynamic approximations. Two numerical models of convection are considered. The first is based on the implicit finite-difference schemes of splitting over spatial variables with correction of pressure. The second numerical model is based on the spectral difference method. The numerical models constructed were compared on model problems of convection in a rectangular parallelepiped in a liquid with constant viscosity, corresponding to the convection in the entire mantle of the Earth [1]. The calculation results are in good agreement with the test results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Busse, F.H., Christensen, U., Clever, R., Cserepes, L., Gable, C., Giannandrea, E., Guillou, L., Houseman, G., Nataf, H.-C., Ogawa, M., Parmentier, M., Sotin, C., and Travis, B., 3D Convection at Infinite Prandtl Number in Cartesian Geometry—A Benchmark Comparison, Geophys. Astrophys. Fluid Dyn., 1993, vol. 75, pp. 39–59.ADSCrossRef Busse, F.H., Christensen, U., Clever, R., Cserepes, L., Gable, C., Giannandrea, E., Guillou, L., Houseman, G., Nataf, H.-C., Ogawa, M., Parmentier, M., Sotin, C., and Travis, B., 3D Convection at Infinite Prandtl Number in Cartesian Geometry—A Benchmark Comparison, Geophys. Astrophys. Fluid Dyn., 1993, vol. 75, pp. 39–59.ADSCrossRef
2.
Zurück zum Zitat Bobrov, A.M. and Trubitsyn, V.P., Times of Restructuring of Mantle Flows Beneath Continents, Fiz. Zemli, 1995, vol. 7, pp. 5–13. Bobrov, A.M. and Trubitsyn, V.P., Times of Restructuring of Mantle Flows Beneath Continents, Fiz. Zemli, 1995, vol. 7, pp. 5–13.
3.
Zurück zum Zitat Ismail-zade, A.T., Korotkii, A.I., Naimark, B.M, and Tsepelev, I.A., Numerical Simulation of Three-Dimensional Viscous Flows with Gravitational and Thermal Effects, Comput. Math. Math. Phys., 2001, vol. 41, no. 9, pp. 1331–1345.MathSciNet Ismail-zade, A.T., Korotkii, A.I., Naimark, B.M, and Tsepelev, I.A., Numerical Simulation of Three-Dimensional Viscous Flows with Gravitational and Thermal Effects, Comput. Math. Math. Phys., 2001, vol. 41, no. 9, pp. 1331–1345.MathSciNet
4.
Zurück zum Zitat Chervov, V.V., Numerical Modeling of 3D Problems of Convection in the Earth Mantle, Using Vorticity and Vector Potential, Vych. Tekhnol., 2002, vol. 7, no. 1, pp. 114–125.MathSciNet Chervov, V.V., Numerical Modeling of 3D Problems of Convection in the Earth Mantle, Using Vorticity and Vector Potential, Vych. Tekhnol., 2002, vol. 7, no. 1, pp. 114–125.MathSciNet
5.
Zurück zum Zitat Chervov, V.V., Numerical Modeling of 3D Problems of Convection in the Earth Mantle Using a Sequence of Meshes, Vych. Tekhnol., 2002, vol. 7, no. 3, pp. 85–92.MathSciNet Chervov, V.V., Numerical Modeling of 3D Problems of Convection in the Earth Mantle Using a Sequence of Meshes, Vych. Tekhnol., 2002, vol. 7, no. 3, pp. 85–92.MathSciNet
6.
Zurück zum Zitat Tychkov, S.A., Chervov, V.V., and Chernykh, G.G., Numerical Modeling of Thermal Convection in the Earth’s Mantle, Dokl. Earth Sci., 2005, vol. 402, no. 4, pp. 596–601. Tychkov, S.A., Chervov, V.V., and Chernykh, G.G., Numerical Modeling of Thermal Convection in the Earth’s Mantle, Dokl. Earth Sci., 2005, vol. 402, no. 4, pp. 596–601.
7.
Zurück zum Zitat Tychkov, S.A., Chervov, V.V., and Chernykh, G.G., Numerical Modeling of 3D Convection in the Earth Mantle, Russ. J. Numer. An. Math. Model., 2005, vol. 20, no. 5, pp. 483–500.CrossRef Tychkov, S.A., Chervov, V.V., and Chernykh, G.G., Numerical Modeling of 3D Convection in the Earth Mantle, Russ. J. Numer. An. Math. Model., 2005, vol. 20, no. 5, pp. 483–500.CrossRef
8.
Zurück zum Zitat Tychkov, S.A., Chervov, V.V., and Chernykh, G.G., A Numerical Model of Three-Dimensional Convection, Izv., Phys. Solid Earth, 2005, vol. 41, no. 5, pp. 383–398. Tychkov, S.A., Chervov, V.V., and Chernykh, G.G., A Numerical Model of Three-Dimensional Convection, Izv., Phys. Solid Earth, 2005, vol. 41, no. 5, pp. 383–398.
9.
Zurück zum Zitat Chervov, V.V., Modeling of 3D Convection in the Earth Mantle Using Implicit Method of Splitting in Physical Processes, Vych. Tekhnol., 2006, vol. 11, no. 4, pp. 73–86. Chervov, V.V., Modeling of 3D Convection in the Earth Mantle Using Implicit Method of Splitting in Physical Processes, Vych. Tekhnol., 2006, vol. 11, no. 4, pp. 73–86.
10.
Zurück zum Zitat Chervov, V.V., Modeling of 3D Convection in the Earth Mantle Using Implicit Method of Weak (Artificial) Compressibility, Vych. Tekhnol., 2009, vol. 14, no. 3, pp. 86–92. Chervov, V.V., Modeling of 3D Convection in the Earth Mantle Using Implicit Method of Weak (Artificial) Compressibility, Vych. Tekhnol., 2009, vol. 14, no. 3, pp. 86–92.
11.
Zurück zum Zitat Chervov, V.V., Chernykh, G.G., Bushenkova, N.A., and Kulakov, I.Yu., Numerical Modeling of Three-Dimensional Convection in the Upper Mantle of the Earth Beneath Eurasia Lithosphere, Vych. Tekhnol., 2014, vol. 19, no. 5, pp. 101–114. Chervov, V.V., Chernykh, G.G., Bushenkova, N.A., and Kulakov, I.Yu., Numerical Modeling of Three-Dimensional Convection in the Upper Mantle of the Earth Beneath Eurasia Lithosphere, Vych. Tekhnol., 2014, vol. 19, no. 5, pp. 101–114.
12.
Zurück zum Zitat Chervov, V.V. and Chernykh, G.G., Numerical Modeling of Three-Dimensional Convection in the Upper Mantle of the Earth Beneath Eurasia Lithosphere, J. Eng. Therm., 2014, vol. 23, no.2, pp. 105–111.CrossRef Chervov, V.V. and Chernykh, G.G., Numerical Modeling of Three-Dimensional Convection in the Upper Mantle of the Earth Beneath Eurasia Lithosphere, J. Eng. Therm., 2014, vol. 23, no.2, pp. 105–111.CrossRef
13.
Zurück zum Zitat Bobrov, A.M. and Baranov, A.A., The Mantle Convection Model with Non-Newtonian Rheology and Phase Transitions: The Flow Structure and Stress Fields, Izv., Phys. Solid Earth, 2016, vol. 52, no. 1, pp. 129–143.ADSCrossRef Bobrov, A.M. and Baranov, A.A., The Mantle Convection Model with Non-Newtonian Rheology and Phase Transitions: The Flow Structure and Stress Fields, Izv., Phys. Solid Earth, 2016, vol. 52, no. 1, pp. 129–143.ADSCrossRef
14.
Zurück zum Zitat Heister, T., Dannberg, J., Gassmöller, R., and Bangerth, W., High Accuracy Mantle Convection through Modern Numerical Methods. II: Realistic Models and Problems, Geophys. J. Int., 2017, vol. 210, no. 2, pp. 833–851.ADSCrossRef Heister, T., Dannberg, J., Gassmöller, R., and Bangerth, W., High Accuracy Mantle Convection through Modern Numerical Methods. II: Realistic Models and Problems, Geophys. J. Int., 2017, vol. 210, no. 2, pp. 833–851.ADSCrossRef
15.
Zurück zum Zitat Chervov, V.V. and Chernykh, G.G., Numerical Modeling of Convection in the Zone of Spreading and Subduction, J. Eng. Therm., 2019, vol. 28, no. 1, pp. 14–25.CrossRef Chervov, V.V. and Chernykh, G.G., Numerical Modeling of Convection in the Zone of Spreading and Subduction, J. Eng. Therm., 2019, vol. 28, no. 1, pp. 14–25.CrossRef
16.
Zurück zum Zitat Trubitsyn, A.P. and Trubitsyn, V.P., Temperature Distribution in the Earth’s Mantle, Dokl. Earth Sci., 2020, vol. 495, no. 2, pp. 905–909. Trubitsyn, A.P. and Trubitsyn, V.P., Temperature Distribution in the Earth’s Mantle, Dokl. Earth Sci., 2020, vol. 495, no. 2, pp. 905–909.
17.
Zurück zum Zitat Chuvaev, A.V., Baranov, A.A., and Bobrov, A.M., Numerical Modelling of Mantle Convection in the Earth Using Cloud Technologies, Comput. Technol., 2020, vol. 25, no. 2, pp. 103–117. Chuvaev, A.V., Baranov, A.A., and Bobrov, A.M., Numerical Modelling of Mantle Convection in the Earth Using Cloud Technologies, Comput. Technol., 2020, vol. 25, no. 2, pp. 103–117.
18.
Zurück zum Zitat Trubitsyn, A.P. and Trubitsyn, V.P., The Heat Balance in the Earth, Dokl. Earth Sci., 2021, vol. 500, no. 1, pp. 746–750. Trubitsyn, A.P. and Trubitsyn, V.P., The Heat Balance in the Earth, Dokl. Earth Sci., 2021, vol. 500, no. 1, pp. 746–750.
19.
Zurück zum Zitat Chervov, V.V., Bushenkova, N.A., and Chernykh, G.G., Tectonic Depressions on the East-European and Siberian Platforms: Numerical Modeling of Convection Beneath the Eurasian Continent, Geodin. Tektonofiz., 2021, vol. 12, no. 1, pp. 84–99; https://doi.org/10.5800/GT-2021-12-1-0514CrossRef Chervov, V.V., Bushenkova, N.A., and Chernykh, G.G., Tectonic Depressions on the East-European and Siberian Platforms: Numerical Modeling of Convection Beneath the Eurasian Continent, Geodin. Tektonofiz., 2021, vol. 12, no. 1, pp. 84–99; https://​doi.​org/​10.​5800/​GT-2021-12-1-0514CrossRef
20.
Zurück zum Zitat Chervov, V.V. and Chernykh, G.G., On Mathematical Modeling of Convection in the Upper Mantle of Earth, J. Eng. Therm., 2023, vol. 32, no. 1, pp. 36–48.CrossRef Chervov, V.V. and Chernykh, G.G., On Mathematical Modeling of Convection in the Upper Mantle of Earth, J. Eng. Therm., 2023, vol. 32, no. 1, pp. 36–48.CrossRef
21.
Zurück zum Zitat Dobretsov, N.L., Kirdyashkin, A.G., and Kirdyashkin, A.A., Glubinnaya geodinamika (Depth Geodynamics), 2nd ed., Novosibirsk: SO RAN, 2001. Dobretsov, N.L., Kirdyashkin, A.G., and Kirdyashkin, A.A., Glubinnaya geodinamika (Depth Geodynamics), 2nd ed., Novosibirsk: SO RAN, 2001.
22.
Zurück zum Zitat DeLuca, E.E., Werne, J., Rosner, R., and Cattaneo, F., Numerical Simulation of Soft and Hard Turbulence: Preliminary Results for Two-Dimensional Convection, Phys. Rev. Lett., 1990, vol. 64, no. 20, pp. 2370–2373.ADSCrossRef DeLuca, E.E., Werne, J., Rosner, R., and Cattaneo, F., Numerical Simulation of Soft and Hard Turbulence: Preliminary Results for Two-Dimensional Convection, Phys. Rev. Lett., 1990, vol. 64, no. 20, pp. 2370–2373.ADSCrossRef
23.
Zurück zum Zitat Cortese, T. and Balachandar, S., Vortical Nature of Thermal Plumes in Turbulent Convection, Phys. Fluids. A, 1993, vol. 5, no. 12, pp. 3226–3232.ADSCrossRef Cortese, T. and Balachandar, S., Vortical Nature of Thermal Plumes in Turbulent Convection, Phys. Fluids. A, 1993, vol. 5, no. 12, pp. 3226–3232.ADSCrossRef
24.
Zurück zum Zitat Curry, J.H., Herring, J.R., Loncaric, J., and Orszag, S.A., Order and Disorder in Two- and Three-Dimensional Benard Convection, J. Fluid Mech., 1984, vol. 147, pp. 1–38.ADSCrossRef Curry, J.H., Herring, J.R., Loncaric, J., and Orszag, S.A., Order and Disorder in Two- and Three-Dimensional Benard Convection, J. Fluid Mech., 1984, vol. 147, pp. 1–38.ADSCrossRef
25.
Zurück zum Zitat Gershuni, G.Z. and Zhukhovitskii, E.M., Convective Stability of Incompressible Fluids, Jerusalem: Israel Program for Scientific Translations, 1976. Gershuni, G.Z. and Zhukhovitskii, E.M., Convective Stability of Incompressible Fluids, Jerusalem: Israel Program for Scientific Translations, 1976.
26.
Zurück zum Zitat Palymskiy, I.B., Gertsenshtein, S.Ya., and Sibgatullin, I.N., Intense Turbulent Convection in a Horizontal Plane Liquid Layer, Izv. Atmosph. Oceanic Phys., 2008, vol. 44, no. 1, pp. 72–82.ADSCrossRef Palymskiy, I.B., Gertsenshtein, S.Ya., and Sibgatullin, I.N., Intense Turbulent Convection in a Horizontal Plane Liquid Layer, Izv. Atmosph. Oceanic Phys., 2008, vol. 44, no. 1, pp. 72–82.ADSCrossRef
27.
Zurück zum Zitat Palymskiy, I., Turbulentnaya konvektsiya Releya–Benara. Chislennyi metod i resultaty raschetov, Germany: LAP, 2011. Palymskiy, I., Turbulentnaya konvektsiya Releya–Benara. Chislennyi metod i resultaty raschetov, Germany: LAP, 2011.
28.
Zurück zum Zitat Kerr, R.M., Rayleigh Number Scaling in Numerical Convection, J. Fluid Mech., 1996, vol. 310, pp. 139–179.ADSCrossRef Kerr, R.M., Rayleigh Number Scaling in Numerical Convection, J. Fluid Mech., 1996, vol. 310, pp. 139–179.ADSCrossRef
29.
Zurück zum Zitat Thual, O., Zero-Prandtl-Number Convection, J. Fluid Mech., 1992, vol. 240, pp. 229–258.ADSCrossRef Thual, O., Zero-Prandtl-Number Convection, J. Fluid Mech., 1992, vol. 240, pp. 229–258.ADSCrossRef
30.
Zurück zum Zitat Palymskiy, I.B., Fomin, P.A., and Hieronymus, H., Rayleigh–Benard Convection in a Chemical Equilibrium Gas (Simulation of Surface Detonation Wave Initiation), Appl. Math. Model., 2008, vol. 32, no. 5, pp. 660–676.CrossRef Palymskiy, I.B., Fomin, P.A., and Hieronymus, H., Rayleigh–Benard Convection in a Chemical Equilibrium Gas (Simulation of Surface Detonation Wave Initiation), Appl. Math. Model., 2008, vol. 32, no. 5, pp. 660–676.CrossRef
31.
Zurück zum Zitat Trim, S.J., Butler, S.L., and Spiteri, R.J., Benchmarking Multiphysics Software for Mantle Convection, Comput. Geosci., 2021, vol. 154, p. 104797.CrossRef Trim, S.J., Butler, S.L., and Spiteri, R.J., Benchmarking Multiphysics Software for Mantle Convection, Comput. Geosci., 2021, vol. 154, p. 104797.CrossRef
Metadaten
Titel
Comparison of Two Numerical Models of Convection in the Earth’s Mantle
verfasst von
V. V. Chervov
G. G. Chernykh
I. B. Palymskiy
Publikationsdatum
01.03.2024
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 1/2024
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232824010041

Weitere Artikel der Ausgabe 1/2024

Journal of Engineering Thermophysics 1/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.