Skip to main content
Erschienen in: Journal of Engineering Thermophysics 1/2024

01.03.2024

Experimental Study of the Process of Dissociation of Methane Hydrate Accompanied by Its Combustion

verfasst von: D. S. Elistratov, S. L. Elistratov, A. A. Chernov

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, the process of dissociation of methane hydrate obtained under laboratory conditions in the form of a loose shapeless mass and in a pressed granular form, placed on a warm surface and on a surface covered with a thin layer of water, including the initiation of combustion of the gas released during the dissociation process, was experimentally studied. The rate of dissociation, the characteristic time of complete decomposition, and the proportion of water evaporating over a given time were determined for all cases considered. Based on the analysis of the dynamics of temperature ranges, as well as data illustrating the rate of mass loss by the sample, it was assumed that the process of dissociation of granular hydrate, both in the case without combustion and in the case of combustion, is accompanied by the phenomenon of self-preservation, which is not observed for loose hydrate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sloan, E. and Koh, C., Clathrate Hydrates of Natural Gases, Chemical Industries, 3rd ed., Taylor & Francis, 2007.CrossRef Sloan, E. and Koh, C., Clathrate Hydrates of Natural Gases, Chemical Industries, 3rd ed., Taylor & Francis, 2007.CrossRef
2.
Zurück zum Zitat Shagapov, V.Sh., Musakaev, N.G., and Khasanov, M.K., Formation of Gas Hydrates in a Porous Medium during an Injection of Cold Gas, Int. J. Heat Mass Transfer, 2015, vol. 84, pp. 1030–1039; DOI:10.1016/j.ijheatmasstransfer.2015.01.105CrossRef Shagapov, V.Sh., Musakaev, N.G., and Khasanov, M.K., Formation of Gas Hydrates in a Porous Medium during an Injection of Cold Gas, Int. J. Heat Mass Transfer, 2015, vol. 84, pp. 1030–1039; DOI:10.1016/j.ijheatmasstransfer.2015.01.105CrossRef
3.
Zurück zum Zitat Molokitina, N.S., Nesterov, A.N., Podenko, L.S., and Reshetnikov, A.M., Carbon Dioxide Hydrate Formation with SDS: Further Insights into Mechanism of Gas Hydrate Growth in the Presence of Surfactant, Fuel, 2019, vol. 235, pp. 1400–1411; DOI:10.1016/j.fuel.2018.08.126CrossRef Molokitina, N.S., Nesterov, A.N., Podenko, L.S., and Reshetnikov, A.M., Carbon Dioxide Hydrate Formation with SDS: Further Insights into Mechanism of Gas Hydrate Growth in the Presence of Surfactant, Fuel, 2019, vol. 235, pp. 1400–1411; DOI:10.1016/j.fuel.2018.08.126CrossRef
4.
Zurück zum Zitat Veluswamy, H.P., Kumar, A., Seo, Y., Lee, J.D., and Linga, P., A Review of Solidified Natural Gas (SNG) Technology for Gas Storage via Clathrate Hydrates, Appl. Energy, 2018, vol. 216, pp. 262–285; DOI:10.1016/j.apenergy.2018.02.059ADSCrossRef Veluswamy, H.P., Kumar, A., Seo, Y., Lee, J.D., and Linga, P., A Review of Solidified Natural Gas (SNG) Technology for Gas Storage via Clathrate Hydrates, Appl. Energy, 2018, vol. 216, pp. 262–285; DOI:10.1016/j.apenergy.2018.02.059ADSCrossRef
5.
Zurück zum Zitat Misyura, S.Y., Donskoy, I.G., Manakov, A.Y., Morozov, V.S., Strizhak, P.A., Skiba, S.S., and Sagidullin, A.K., Studying the Influence of Key Parameters on the Methane Hydrate Dissociation in Order to Improve the Storage Efficiency, J. Energy Stor., 2021, vol. 44, part A, pp. 103288; DOI:10.1016/j.est.2021.103288CrossRef Misyura, S.Y., Donskoy, I.G., Manakov, A.Y., Morozov, V.S., Strizhak, P.A., Skiba, S.S., and Sagidullin, A.K., Studying the Influence of Key Parameters on the Methane Hydrate Dissociation in Order to Improve the Storage Efficiency, J. Energy Stor., 2021, vol. 44, part A, pp. 103288; DOI:10.1016/j.est.2021.103288CrossRef
6.
Zurück zum Zitat Warrier, P., Khan, M.N., Carreon, M.A., Peters, C.J., and Koh, C.A., Integrated Gas Hydrate–Membrane System for Natural Gas Purification, J. Renew. Sust. Energy, 2018, vol. 10, no. 3, pp. 034701; DOI:10.1063/1.5019967CrossRef Warrier, P., Khan, M.N., Carreon, M.A., Peters, C.J., and Koh, C.A., Integrated Gas Hydrate–Membrane System for Natural Gas Purification, J. Renew. Sust. Energy, 2018, vol. 10, no. 3, pp. 034701; DOI:10.1063/1.5019967CrossRef
7.
Zurück zum Zitat Musakaev, N.G., Khasanov, M.K., and Borodin, S.L., The Mathematical Model of the Gas Hydrate Deposit Development in Permafrost, Int. J. Heat Mass Transfer, 2018, vol. 118, pp. 455–461; DOI:10.1016/j.ijheatmasstransfer.2017.10.127CrossRef Musakaev, N.G., Khasanov, M.K., and Borodin, S.L., The Mathematical Model of the Gas Hydrate Deposit Development in Permafrost, Int. J. Heat Mass Transfer, 2018, vol. 118, pp. 455–461; DOI:10.1016/j.ijheatmasstransfer.2017.10.127CrossRef
8.
Zurück zum Zitat Borodin, S.L., Musakaev, N.G., and Belskikh, D.S., Mathematical Modeling of a Non-Isothermal Flow in a Porous Medium Considering Gas Hydrate Decomposition: A Review, Mathematics, 2022, vol. 10, no. 24, p. 4674; DOI: 10.3390/math10244674CrossRef Borodin, S.L., Musakaev, N.G., and Belskikh, D.S., Mathematical Modeling of a Non-Isothermal Flow in a Porous Medium Considering Gas Hydrate Decomposition: A Review, Mathematics, 2022, vol. 10, no. 24, p. 4674; DOI: 10.3390/math10244674CrossRef
9.
Zurück zum Zitat Babu, P., Nambiar, A., He, T., Karimi, I.A., Lee, J.D., Englezos, P., and Linga, P., A Review of Clathrate Hydrate Based Desalination to Strengthen Energy-Water Nexus, ACS Sust. Chem. Engin., 2018, vol. 6, no. 7, pp. 8093–8107; DOI:10.1021/acssuschemeng.8b01616CrossRef Babu, P., Nambiar, A., He, T., Karimi, I.A., Lee, J.D., Englezos, P., and Linga, P., A Review of Clathrate Hydrate Based Desalination to Strengthen Energy-Water Nexus, ACS Sust. Chem. Engin., 2018, vol. 6, no. 7, pp. 8093–8107; DOI:10.1021/acssuschemeng.8b01616CrossRef
10.
Zurück zum Zitat Cheng, C., Wang, F., Tian, Y., Wu, X., Zheng, J., Zhang, J., Li, L., Yang, P., and Zhao, J., Review and Prospects of Hydrate Cold Storage Technology, Renew. Sust. Energy Rev., 2020, vol. 117, pp. 109492; DOI:10.1016/j.rser.2019.109492CrossRef Cheng, C., Wang, F., Tian, Y., Wu, X., Zheng, J., Zhang, J., Li, L., Yang, P., and Zhao, J., Review and Prospects of Hydrate Cold Storage Technology, Renew. Sust. Energy Rev., 2020, vol. 117, pp. 109492; DOI:10.1016/j.rser.2019.109492CrossRef
11.
Zurück zum Zitat Tajima, H., Yamasaki, A., and Kiyono, F., Continuous Formation of CO2 Hydrate via a Kenics-Type Static Mixer, Energy Fuels, 2004, vol. 18, pp. 1451–1456; DOI:10.1021/ef034087wCrossRef Tajima, H., Yamasaki, A., and Kiyono, F., Continuous Formation of CO2 Hydrate via a Kenics-Type Static Mixer, Energy Fuels, 2004, vol. 18, pp. 1451–1456; DOI:10.1021/ef034087wCrossRef
12.
Zurück zum Zitat Fukumoto, K., Tobe, J.-I., Ohmura, R., and Mori, Y.H., Hydrate Formation Using Water Spraying in a Hydrophobic Gas: A Preliminary Study, AIChE J., 2001, vol. 47, pp. 1899–1904; DOI:10.1002/ aic.690470821ADSCrossRef Fukumoto, K., Tobe, J.-I., Ohmura, R., and Mori, Y.H., Hydrate Formation Using Water Spraying in a Hydrophobic Gas: A Preliminary Study, AIChE J., 2001, vol. 47, pp. 1899–1904; DOI:10.1002/ aic.690470821ADSCrossRef
13.
Zurück zum Zitat Faizullin, M.Z., Vinogradov, A.V., and Koverda, V.P., Hydrate Formation in Layers of Gas-Saturated Amorphous Ice, Chem. Engin. Sci., 2015, vol. 130, pp. 135–143; DOI:10.1016/j.ces.2015.03.032ADSCrossRef Faizullin, M.Z., Vinogradov, A.V., and Koverda, V.P., Hydrate Formation in Layers of Gas-Saturated Amorphous Ice, Chem. Engin. Sci., 2015, vol. 130, pp. 135–143; DOI:10.1016/j.ces.2015.03.032ADSCrossRef
14.
Zurück zum Zitat Dontsov, V.E. and Chernov, A.A., Dilution and Hydrate Forming Process in Shock Waves, Int. J. Heat Mass Transfer, 2009, vol. 52, nos. 21/22, pp. 4919–4928; DOI:10.1016/j.ijheatmasstransfer.2009.04.030CrossRef Dontsov, V.E. and Chernov, A.A., Dilution and Hydrate Forming Process in Shock Waves, Int. J. Heat Mass Transfer, 2009, vol. 52, nos. 21/22, pp. 4919–4928; DOI:10.1016/j.ijheatmasstransfer.2009.04.030CrossRef
15.
Zurück zum Zitat Chernov, A.A. and Dontsov, V.E., The Processes of Dissolution and Hydrate Forming behind the Shock Wave in the Gas-Liquid Medium with Gas Mixture Bubbles, Int. J. Heat Mass Transfer, 2011, vol. 54, nos. 19/20, pp. 4307–4316; DOI:10.1016/j.ijheatmasstransfer.2011.05.014CrossRef Chernov, A.A. and Dontsov, V.E., The Processes of Dissolution and Hydrate Forming behind the Shock Wave in the Gas-Liquid Medium with Gas Mixture Bubbles, Int. J. Heat Mass Transfer, 2011, vol. 54, nos. 19/20, pp. 4307–4316; DOI:10.1016/j.ijheatmasstransfer.2011.05.014CrossRef
16.
Zurück zum Zitat Chernov, A.A., Pil’nik, A.A., Elistratov, D.S., Mezentsev, I.V., Meleshkin, A.V., Bartashevich, M.V., and Vlasenko, M.G., New Hydrate Formation Methods in a Liquid-Gas Medium, Sci. Rep., 2017, vol. 7, pp. 40809; DOI:10.1038/srep40809ADSCrossRef Chernov, A.A., Pil’nik, A.A., Elistratov, D.S., Mezentsev, I.V., Meleshkin, A.V., Bartashevich, M.V., and Vlasenko, M.G., New Hydrate Formation Methods in a Liquid-Gas Medium, Sci. Rep., 2017, vol. 7, pp. 40809; DOI:10.1038/srep40809ADSCrossRef
17.
Zurück zum Zitat Chernov, A.A., Elistratov, D.S., Mezentsev, I.V., Meleshkin, A.V., and Pil’nik, A.A., Hydrate Formation in the Cyclic Process of Refrigerant Boiling—Condensation in a Water Volume, Int. J. Heat Mass Transfer, 2017, vol. 108, pp. 1320–1323; DOI:10.1016/j.ijheatmasstransfer.2016.12.035CrossRef Chernov, A.A., Elistratov, D.S., Mezentsev, I.V., Meleshkin, A.V., and Pil’nik, A.A., Hydrate Formation in the Cyclic Process of Refrigerant Boiling—Condensation in a Water Volume, Int. J. Heat Mass Transfer, 2017, vol. 108, pp. 1320–1323; DOI:10.1016/j.ijheatmasstransfer.2016.12.035CrossRef
18.
Zurück zum Zitat Antonov, D., Gaidukova, O., Nyashina, G., Razumov, D., and Strizhak, P., Prospects of Using Gas Hydrates in Power Plants, Energies, 2022, vol. 5, no. 12, pp. 4188; DOI:10.3390/en15124188CrossRef Antonov, D., Gaidukova, O., Nyashina, G., Razumov, D., and Strizhak, P., Prospects of Using Gas Hydrates in Power Plants, Energies, 2022, vol. 5, no. 12, pp. 4188; DOI:10.3390/en15124188CrossRef
19.
Zurück zum Zitat Nakoryakov, V.E., Misyura, S.Ya., Elistratov, S.L., Manakov, A.Yu., and Shubnikov, A.E., Combustion of Methane Hydrates, J. Eng. Therm., 2013, vol. 22, pp. 87–92; DOI:10.1134/S181023281302001XCrossRef Nakoryakov, V.E., Misyura, S.Ya., Elistratov, S.L., Manakov, A.Yu., and Shubnikov, A.E., Combustion of Methane Hydrates, J. Eng. Therm., 2013, vol. 22, pp. 87–92; DOI:10.1134/S181023281302001XCrossRef
20.
Zurück zum Zitat Gimaltdinov, I.K., Bayanov, I.M., Stolpovskii, M.V., and Chiglintseva, A.S., On the Confined Combustion of a Hydrate, J. Engin. Phys. Thermophys., 2022, vol. 95, pp. 591–598; DOI:10.1007/s10891-022-02515-wADSCrossRef Gimaltdinov, I.K., Bayanov, I.M., Stolpovskii, M.V., and Chiglintseva, A.S., On the Confined Combustion of a Hydrate, J. Engin. Phys. Thermophys., 2022, vol. 95, pp. 591–598; DOI:10.1007/s10891-022-02515-wADSCrossRef
21.
Zurück zum Zitat Misyura, S.Ya., Dissociation and Combustion of Gas Hydrates, J. Eng. Therm., 2022, vol. 31, pp. 573–579; DOI:10.1134/S181023282204004XCrossRef Misyura, S.Ya., Dissociation and Combustion of Gas Hydrates, J. Eng. Therm., 2022, vol. 31, pp. 573–579; DOI:10.1134/S181023282204004XCrossRef
22.
Zurück zum Zitat Adamova, T.P., Manakov, A.Yu., Elistratov, D.S., Pil’nik, A.A., and Chernov, A.A., Experimental Study of Methane Hydrate Formation in Aqueous Foam Stabilized by Surfactants, Int. J. Heat Mass Transfer, 2021, vol. 180, pp. 121775; DOI:10.1016/j.ijheatmasstransfer.2021.121775CrossRef Adamova, T.P., Manakov, A.Yu., Elistratov, D.S., Pil’nik, A.A., and Chernov, A.A., Experimental Study of Methane Hydrate Formation in Aqueous Foam Stabilized by Surfactants, Int. J. Heat Mass Transfer, 2021, vol. 180, pp. 121775; DOI:10.1016/j.ijheatmasstransfer.2021.121775CrossRef
Metadaten
Titel
Experimental Study of the Process of Dissociation of Methane Hydrate Accompanied by Its Combustion
verfasst von
D. S. Elistratov
S. L. Elistratov
A. A. Chernov
Publikationsdatum
01.03.2024
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 1/2024
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S181023282401003X

Weitere Artikel der Ausgabe 1/2024

Journal of Engineering Thermophysics 1/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.