Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 10/2021

24-04-2021

Complex electrical impedance and modulus characterizations of ZnO:Sn thin films in a wide temperature range

Authors: Irmak Karaduman Er, Ali Orkun Çağırtekin, Ahmad Ajjaq, Memet Ali Yıldırım, Aytunç Ateş, Selim Acar

Published in: Journal of Materials Science: Materials in Electronics | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, pure zinc oxide (ZnO) and tin-doped zinc oxide (Zn1−xSnxO) thin films were synthesized using successive ionic layer adsorption and reaction (SILAR) method in 40 cycles with doping ratios x = 0.05, 0.10, 0.15, and 0.20. Subsequently, structural, optical, and electrical characteristics of all synthesized thin films were properly investigated by the appropriate techniques. For structural characterizations, X-ray diffraction (XRD) technique was employed, and the data demonstrated the appropriate hexagonal wurtzite structure of the synthesized thin films and predicted the decrease of crystallite size with Sn doping. Likewise, optical characterizations were carried out through ultraviolet–visible (UV–Vis) technique, and the data showed good transparency of ZnO thin film and confirmed the increase in transparency and bandgap upon Sn doping. Additionally, to probe the electrical aspects of the synthesized thin films, impedance, modulus, and conductivity analyses were carried out as a function of frequency in a wide temperature range (450–750 K). The results demonstrated the critical effect of temperature and Sn doping ratio in ZnO thin films. At high enough temperatures, inductive effects became evident in the low-frequency region of all the thin films. And at all temperatures, 5 wt%- and 10 wt%-doped films exhibited extreme responses in the investigated doping range, where the former and the latter showed, respectively, highest and lowest conductivity as well as lowest and highest possibility of grain effects in the film structure. This behavior was confirmed using two different analysis techniques with two separate data sets, (Z, θ) and (C, G).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Y. Andolsi, F. Chaabouni, M. Abaab, J. Mater. Sci. 28, 8347–8358 (2017) Y. Andolsi, F. Chaabouni, M. Abaab, J. Mater. Sci. 28, 8347–8358 (2017)
2.
3.
go back to reference E. Fortunato, P. Barquinha, A. Pimentel, L. Pereira, G. Gonçalves, R. Martins, Phys. Stat. Sol. 1, R34 (2007) E. Fortunato, P. Barquinha, A. Pimentel, L. Pereira, G. Gonçalves, R. Martins, Phys. Stat. Sol. 1, R34 (2007)
4.
go back to reference L. Qiang, X. Liang, Y. Pei, R. Yao, G. Wang, Thin Solid Films 649, 51–56 (2018)CrossRef L. Qiang, X. Liang, Y. Pei, R. Yao, G. Wang, Thin Solid Films 649, 51–56 (2018)CrossRef
5.
go back to reference T. Ootsuka, Z. Liu, M. Osamura, Y. Fukuzawa, R. Kuroda, Y. Suzuki, N. Otogawa, T. Mise, S. Wang, Y. Hoshino, Y. Nakayama, H. Tanoue, Y. Makita, Thin Solid Films 476, 30–34 (2005)CrossRef T. Ootsuka, Z. Liu, M. Osamura, Y. Fukuzawa, R. Kuroda, Y. Suzuki, N. Otogawa, T. Mise, S. Wang, Y. Hoshino, Y. Nakayama, H. Tanoue, Y. Makita, Thin Solid Films 476, 30–34 (2005)CrossRef
6.
go back to reference S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lupan, Sens. Actuat. B 107, 379–386 (2005)CrossRef S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lupan, Sens. Actuat. B 107, 379–386 (2005)CrossRef
7.
go back to reference L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov, Q.K. Xue, X. Du, Phys. Rev. B 93, 235305 (2016)CrossRef L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov, Q.K. Xue, X. Du, Phys. Rev. B 93, 235305 (2016)CrossRef
8.
go back to reference T. Prakash, R. Jayaprakash, C. Espro, G. Neri, E.R. Kumar, J. Mater. Sci. 49, 1776–1784 (2014)CrossRef T. Prakash, R. Jayaprakash, C. Espro, G. Neri, E.R. Kumar, J. Mater. Sci. 49, 1776–1784 (2014)CrossRef
9.
go back to reference I. Karaduman, A.O. Çağırtekin, T. Çorlu, M.A. Yıldırım, A. Ateş, S. Acar, Bull. Mater. Sci. 10, 32–42 (2019)CrossRef I. Karaduman, A.O. Çağırtekin, T. Çorlu, M.A. Yıldırım, A. Ateş, S. Acar, Bull. Mater. Sci. 10, 32–42 (2019)CrossRef
10.
go back to reference F. Zahedi, R.S. Dariani, S.M. Rozati, Bull. Mater. Sci. 37, 433–439 (2014)CrossRef F. Zahedi, R.S. Dariani, S.M. Rozati, Bull. Mater. Sci. 37, 433–439 (2014)CrossRef
11.
go back to reference V.K. Anand, S.C. Sood, A. Sharma, A.I.P. Conf, Proc. 399, 1324 (2010) V.K. Anand, S.C. Sood, A. Sharma, A.I.P. Conf, Proc. 399, 1324 (2010)
12.
go back to reference L.H. Kathwate, G. Umadevi, P.M. Kulal, P. Nagaraju, D.P. Dubal, A.K. Nanjundan, V.D. Mote, Sens. Actuat. A 313, 112193 (2020)CrossRef L.H. Kathwate, G. Umadevi, P.M. Kulal, P. Nagaraju, D.P. Dubal, A.K. Nanjundan, V.D. Mote, Sens. Actuat. A 313, 112193 (2020)CrossRef
13.
go back to reference N. Nagayasamy, S. Gandhimathination, V. Veerasamy, Open J. Met. 3, 8–11 (2013)CrossRef N. Nagayasamy, S. Gandhimathination, V. Veerasamy, Open J. Met. 3, 8–11 (2013)CrossRef
14.
go back to reference T. Yıldırım, E. Gür, S. Tüzemen, V. Bilgin, S. Köşe, F. Atay, I. Akyüz, Phys. E. 27, 290–295 (2005)CrossRef T. Yıldırım, E. Gür, S. Tüzemen, V. Bilgin, S. Köşe, F. Atay, I. Akyüz, Phys. E. 27, 290–295 (2005)CrossRef
15.
go back to reference M. Coskun, O. Polat, F.M. Coskun, B. Zengin Kurt, Z. Durmus, M. Caglar, A. Turut, Mater. Sci. Elect. 31, 1731–1744 (2020)CrossRef M. Coskun, O. Polat, F.M. Coskun, B. Zengin Kurt, Z. Durmus, M. Caglar, A. Turut, Mater. Sci. Elect. 31, 1731–1744 (2020)CrossRef
16.
go back to reference A. Rouahi, A. Kahouli, F. Challali, M.P. Besland, C. Vallee, B. Yangui, S. Salimy, A. Goullet, A. Sylvestre, J. Phys. D 46, 065308 (2013)CrossRef A. Rouahi, A. Kahouli, F. Challali, M.P. Besland, C. Vallee, B. Yangui, S. Salimy, A. Goullet, A. Sylvestre, J. Phys. D 46, 065308 (2013)CrossRef
17.
go back to reference L.D. Mosgaard, K.A. Zecchi, T. Heimburg, R. Budvytyte, Membranes 5, 495–512 (2015)CrossRef L.D. Mosgaard, K.A. Zecchi, T. Heimburg, R. Budvytyte, Membranes 5, 495–512 (2015)CrossRef
18.
go back to reference G.J. Brug, A.L.G. Van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, J. Electroanal. Chem. Inter. Electrochem. 176, 275–295 (1984)CrossRef G.J. Brug, A.L.G. Van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, J. Electroanal. Chem. Inter. Electrochem. 176, 275–295 (1984)CrossRef
19.
go back to reference S. Mourad, J. El Ghoul, K. Khirouni, J. Mater. Sci. 31, 6372–6384 (2020) S. Mourad, J. El Ghoul, K. Khirouni, J. Mater. Sci. 31, 6372–6384 (2020)
20.
go back to reference O. Polat, M. Coskun, F.M. Coskun, J. Zlamal, Z. Durmus, M. Caglar, A. Turut, Mater. Res. Bull. 124, 110759 (2020)CrossRef O. Polat, M. Coskun, F.M. Coskun, J. Zlamal, Z. Durmus, M. Caglar, A. Turut, Mater. Res. Bull. 124, 110759 (2020)CrossRef
21.
go back to reference O. Polat, M. Coskun, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, J. Alloy Compd 752, 274–288 (2018)CrossRef O. Polat, M. Coskun, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, J. Alloy Compd 752, 274–288 (2018)CrossRef
22.
23.
24.
25.
26.
go back to reference P. Choudhary, P. Saxena, A. Yadav, V.N. Rai, A. Mishra, Ionics 25, 4991–5001 (2019)CrossRef P. Choudhary, P. Saxena, A. Yadav, V.N. Rai, A. Mishra, Ionics 25, 4991–5001 (2019)CrossRef
27.
go back to reference M. Chandrasekhar, D.K. Khatua, R. Pattanayak, P. Kumar, J. Phys. Chem. Sol. 111, 160–166 (2017)CrossRef M. Chandrasekhar, D.K. Khatua, R. Pattanayak, P. Kumar, J. Phys. Chem. Sol. 111, 160–166 (2017)CrossRef
28.
go back to reference G.R. Gajula, L.R. Buddiga, K.N. Chidambara Kumar, Res. Phys. 17, 103076 (2020) G.R. Gajula, L.R. Buddiga, K.N. Chidambara Kumar, Res. Phys. 17, 103076 (2020)
Metadata
Title
Complex electrical impedance and modulus characterizations of ZnO:Sn thin films in a wide temperature range
Authors
Irmak Karaduman Er
Ali Orkun Çağırtekin
Ahmad Ajjaq
Memet Ali Yıldırım
Aytunç Ateş
Selim Acar
Publication date
24-04-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 10/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05935-1

Other articles of this Issue 10/2021

Journal of Materials Science: Materials in Electronics 10/2021 Go to the issue