Skip to main content
Top
Published in: Acta Mechanica 9/2019

10-07-2019 | Original Paper

Complex frequency band structure of periodic thermo-diffusive materials by Floquet–Bloch theory

Authors: Andrea Bacigalupo, Maria Laura De Bellis, Giorgio Gnecco

Published in: Acta Mechanica | Issue 9/2019

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work deals with the micromechanical study of periodic thermo-diffusive elastic multi-layered materials, which are of interest for the fabrication of solid oxide fuel cells. The focus is on the dynamic regime that is investigating the dispersive wave propagation within the periodic material. In this framework, a generalization of the Floquet–Bloch theory is adopted, able to determine the complex band structure of such materials. The infinite algebraic linear system, obtained by exploiting both bilateral Laplace transform and Fourier transform, is replaced by its finite counterpart, resulting from a proper truncation at a finite number of considered unknowns and equations. A regularization technique is herein useful to get rid of the Gibbs phenomenon. The solution of the problem is, finally, found in terms of complex angular frequencies, corresponding to a finite sequence of eigenvalue problems for given values of the wave vector. The paper is complemented by numerical examples taking into account thermo-mechanical coupling. The frequency band structure of the periodic thermo-diffusive elastic material is found to be strongly influenced by the interaction between thermal and mechanical phenomena.
Appendix
Available only for authorised users
Literature
1.
go back to reference Åberg, M., Gudmundson, P.: Micromechanical modeling of transient waves from matrix cracking and fiber fracture in laminated beams. Int. J. Solids Struct. 37(30), 4083–4102 (2000)MATHCrossRef Åberg, M., Gudmundson, P.: Micromechanical modeling of transient waves from matrix cracking and fiber fracture in laminated beams. Int. J. Solids Struct. 37(30), 4083–4102 (2000)MATHCrossRef
2.
go back to reference Aboudi, J., Pindera, M.-J., Arnold, S.: Linear thermoelastic higher-order theory for periodic multiphase materials. J. Appl. Mech. 68(5), 697–707 (2001)MATHCrossRef Aboudi, J., Pindera, M.-J., Arnold, S.: Linear thermoelastic higher-order theory for periodic multiphase materials. J. Appl. Mech. 68(5), 697–707 (2001)MATHCrossRef
3.
go back to reference Addessi, D., De Bellis, M.L., Sacco, E.: Micromechanical analysis of heterogeneous materials subjected to overall cosserat strains. Mech. Res. Commun. 54, 27–34 (2013)CrossRef Addessi, D., De Bellis, M.L., Sacco, E.: Micromechanical analysis of heterogeneous materials subjected to overall cosserat strains. Mech. Res. Commun. 54, 27–34 (2013)CrossRef
4.
go back to reference Addessi, D., De Bellis, M.L., Sacco, E.: A micromechanical approach for the cosserat modeling of composites. Meccanica 51(3), 569–592 (2016)MathSciNetMATHCrossRef Addessi, D., De Bellis, M.L., Sacco, E.: A micromechanical approach for the cosserat modeling of composites. Meccanica 51(3), 569–592 (2016)MathSciNetMATHCrossRef
5.
go back to reference Bacca, M., Bigoni, D., Dal Corso, F., Veber, D.: Mindlin second-gradient elastic properties from dilute two-phase Cauchy-elastic composites. Part I: closed form expression for the effective higher-order constitutive tensor. Int. J. Solids Struct. 50(24), 4010–4019 (2013a)CrossRef Bacca, M., Bigoni, D., Dal Corso, F., Veber, D.: Mindlin second-gradient elastic properties from dilute two-phase Cauchy-elastic composites. Part I: closed form expression for the effective higher-order constitutive tensor. Int. J. Solids Struct. 50(24), 4010–4019 (2013a)CrossRef
6.
go back to reference Bacca, M., Bigoni, D., Dal Corso, F., Veber, D.: Mindlin second-gradient elastic properties from dilute two-phase Cauchy-elastic composites Part II: higher-order constitutive properties and application cases. Int. J. Solids Struct. 50(24), 4020–4029 (2013b)CrossRef Bacca, M., Bigoni, D., Dal Corso, F., Veber, D.: Mindlin second-gradient elastic properties from dilute two-phase Cauchy-elastic composites Part II: higher-order constitutive properties and application cases. Int. J. Solids Struct. 50(24), 4020–4029 (2013b)CrossRef
7.
go back to reference Bacigalupo, A.: Second-order homogenization of periodic materials based on asymptotic approximation of the strain energy: formulation and validity limits. Meccanica 49(6), 1407–1425 (2014)MathSciNetMATHCrossRef Bacigalupo, A.: Second-order homogenization of periodic materials based on asymptotic approximation of the strain energy: formulation and validity limits. Meccanica 49(6), 1407–1425 (2014)MathSciNetMATHCrossRef
8.
go back to reference Bacigalupo, A., De Bellis, M.L.: Auxetic anti-tetrachiral materials: equivalent elastic properties and frequency band-gaps. Compos. Struct. 131, 530–544 (2015)CrossRef Bacigalupo, A., De Bellis, M.L.: Auxetic anti-tetrachiral materials: equivalent elastic properties and frequency band-gaps. Compos. Struct. 131, 530–544 (2015)CrossRef
9.
go back to reference Bacigalupo, A., Gambarotta, L.: Multi-scale strain-localization analysis of a layered strip with debonding interfaces. Int. J. Solids Struct. 50, 2061–2077 (2013)CrossRef Bacigalupo, A., Gambarotta, L.: Multi-scale strain-localization analysis of a layered strip with debonding interfaces. Int. J. Solids Struct. 50, 2061–2077 (2013)CrossRef
10.
go back to reference Bacigalupo, A., Morini, L., Piccolroaz, A.: Effective elastic properties of planar sofcs: a non-local dynamic homogenization approach. Int. J. Hydrog. Energy 39(27), 15017–15030 (2014)CrossRef Bacigalupo, A., Morini, L., Piccolroaz, A.: Effective elastic properties of planar sofcs: a non-local dynamic homogenization approach. Int. J. Hydrog. Energy 39(27), 15017–15030 (2014)CrossRef
11.
go back to reference Bacigalupo, A., Morini, L., Piccolroaz, A.: Multiscale asymptotic homogenization analysis of thermo-diffusive composite materials. Int. J. Solids Struct. 85–86, 15–33 (2016a)CrossRef Bacigalupo, A., Morini, L., Piccolroaz, A.: Multiscale asymptotic homogenization analysis of thermo-diffusive composite materials. Int. J. Solids Struct. 85–86, 15–33 (2016a)CrossRef
12.
go back to reference Bacigalupo, A., Morini, L., Piccolroaz, A.: Overall thermomechanical properties of layered materials for energy devices applications. Compos. Struct. 157, 366–385 (2016b)CrossRef Bacigalupo, A., Morini, L., Piccolroaz, A.: Overall thermomechanical properties of layered materials for energy devices applications. Compos. Struct. 157, 366–385 (2016b)CrossRef
13.
go back to reference Bacigalupo, A., Paggi, M., Dal Corso, F., Bigoni, D.: Identification of higher-order continua equivalent to a Cauchy elastic composite. Mech. Res. Commun. 93, 11–22 (2018)CrossRef Bacigalupo, A., Paggi, M., Dal Corso, F., Bigoni, D.: Identification of higher-order continua equivalent to a Cauchy elastic composite. Mech. Res. Commun. 93, 11–22 (2018)CrossRef
14.
go back to reference Bigoni, D., Drugan, W.: Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74(4), 741–753 (2007)MathSciNetCrossRef Bigoni, D., Drugan, W.: Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74(4), 741–753 (2007)MathSciNetCrossRef
16.
go back to reference Bove, R., Ubertini, S.: Modeling Solid Oxide Fuel Cells: Methods, Procedures and Techniques. Springer, Berlin (2008)CrossRef Bove, R., Ubertini, S.: Modeling Solid Oxide Fuel Cells: Methods, Procedures and Techniques. Springer, Berlin (2008)CrossRef
17.
go back to reference Chen, W., Fish, J.: A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales. J. Appl. Mech. 68(2), 153–161 (2001)MATHCrossRef Chen, W., Fish, J.: A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales. J. Appl. Mech. 68(2), 153–161 (2001)MATHCrossRef
18.
go back to reference De Bellis, M.L., Addessi, D.: A Cosserat based multi-scale model for masonry structures. Int. J. Multiscale Comput. Eng. 9(5), 543–563 (2011)CrossRef De Bellis, M.L., Addessi, D.: A Cosserat based multi-scale model for masonry structures. Int. J. Multiscale Comput. Eng. 9(5), 543–563 (2011)CrossRef
19.
go back to reference De Bellis, M.L., Bacigalupo, A.: Auxetic behavior and acoustic properties of microstructured piezoelectric strain sensors. Smart Mater. Struct. 26(8), 085037 (2017)CrossRef De Bellis, M.L., Bacigalupo, A.: Auxetic behavior and acoustic properties of microstructured piezoelectric strain sensors. Smart Mater. Struct. 26(8), 085037 (2017)CrossRef
20.
go back to reference Deraemaeker, A., Nasser, H.: Numerical evaluation of the equivalent properties of macro fiber composite (MFC) transducers using periodic homogenization. Int. J. Solids Struct. 47(24), 3272–3285 (2010)MATHCrossRef Deraemaeker, A., Nasser, H.: Numerical evaluation of the equivalent properties of macro fiber composite (MFC) transducers using periodic homogenization. Int. J. Solids Struct. 47(24), 3272–3285 (2010)MATHCrossRef
21.
go back to reference Dev, B., Walter, M.E., Arkenberg, G.B., Swartz, S.L.: Mechanical and thermal characterization of a ceramic/glass composite seal for solid oxide fuel cells. J. Power Sources 245, 958–966 (2014)CrossRef Dev, B., Walter, M.E., Arkenberg, G.B., Swartz, S.L.: Mechanical and thermal characterization of a ceramic/glass composite seal for solid oxide fuel cells. J. Power Sources 245, 958–966 (2014)CrossRef
22.
go back to reference Diouf, B., Pode, R.: Potential of lithium-ion batteries in renewable energy. Renew. Energy 76, 375–380 (2015)CrossRef Diouf, B., Pode, R.: Potential of lithium-ion batteries in renewable energy. Renew. Energy 76, 375–380 (2015)CrossRef
23.
go back to reference Duhamel, J.M.: Second memoire sur lesphenomenes thermome’eaniques. J. de l’Ecole Polytechn 15, 1–15 (1837) Duhamel, J.M.: Second memoire sur lesphenomenes thermome’eaniques. J. de l’Ecole Polytechn 15, 1–15 (1837)
24.
go back to reference Ellis, B.L., Kaitlin, T., Nazar, L.F.: New composite materials for lithium-ion batteries. Electrochimica Acta 84(1), 145–154 (2011) Ellis, B.L., Kaitlin, T., Nazar, L.F.: New composite materials for lithium-ion batteries. Electrochimica Acta 84(1), 145–154 (2011)
25.
go back to reference Fantoni, F., Bacigalupo, A., Paggi, M.: Multi-field asymptotic homogenization of thermo-piezoelectric materials with periodic microstructure. Int. J. Solids Struct. 120, 31–56 (2017)CrossRef Fantoni, F., Bacigalupo, A., Paggi, M.: Multi-field asymptotic homogenization of thermo-piezoelectric materials with periodic microstructure. Int. J. Solids Struct. 120, 31–56 (2017)CrossRef
27.
go back to reference Freund, J., Karako, A., Sjlund, J.: Computational homogenization of regular cellular material according to classical elasticity. Mech. Mater. 78, 56–65 (2014)CrossRef Freund, J., Karako, A., Sjlund, J.: Computational homogenization of regular cellular material according to classical elasticity. Mech. Mater. 78, 56–65 (2014)CrossRef
28.
go back to reference Galka, A., Telega, J., Wojnar, R.: Some computational aspects of homogenization of thermopiezoelectric composites. Comput. Assist. Mech. Eng. Sci. 3(2), 133–154 (1996) Galka, A., Telega, J., Wojnar, R.: Some computational aspects of homogenization of thermopiezoelectric composites. Comput. Assist. Mech. Eng. Sci. 3(2), 133–154 (1996)
29.
go back to reference Geers, M., Kouznetsova, V., Brekelmans, W.: Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234(7), 2175–2182 (2010)MATHCrossRef Geers, M., Kouznetsova, V., Brekelmans, W.: Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 234(7), 2175–2182 (2010)MATHCrossRef
30.
go back to reference Golub, G.H., van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)MATH Golub, G.H., van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)MATH
31.
go back to reference Hajimolana, S.A., Hussain, M.A., Wan Daud, W.M.A., Soroush, M., Shamiri, A.: Mathematical modeling of solid oxide fuel cells: a review. Renew. Sustain. Energy Rev. 15(4), Article number: 1893e917 (2011) Hajimolana, S.A., Hussain, M.A., Wan Daud, W.M.A., Soroush, M., Shamiri, A.: Mathematical modeling of solid oxide fuel cells: a review. Renew. Sustain. Energy Rev. 15(4), Article number: 1893e917 (2011)
32.
go back to reference Hawwa, M.A., Nayfeh, A.H.: The general problem of thermoelastic waves in anisotropic periodically laminated composites. Compos. Eng. 5(12), 1499–1517 (1995)CrossRef Hawwa, M.A., Nayfeh, A.H.: The general problem of thermoelastic waves in anisotropic periodically laminated composites. Compos. Eng. 5(12), 1499–1517 (1995)CrossRef
33.
go back to reference Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2010)MATH Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2010)MATH
34.
go back to reference Jerri, A.E.: The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations. Springer, Berlin (1998)MATHCrossRef Jerri, A.E.: The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations. Springer, Berlin (1998)MATHCrossRef
35.
go back to reference Johnson, J., Qu, J.: Effective modulus and coefficient of thermal expansion of Ni-YSZ porous cermets. J. Power Sources 181(1), 85–92 (2008)CrossRef Johnson, J., Qu, J.: Effective modulus and coefficient of thermal expansion of Ni-YSZ porous cermets. J. Power Sources 181(1), 85–92 (2008)CrossRef
36.
go back to reference Jeffreys, H.: The thermodynamics of an elastic solid. Proc. Camb. Philos. Soc. 26, 101–106 (1930)MATHCrossRef Jeffreys, H.: The thermodynamics of an elastic solid. Proc. Camb. Philos. Soc. 26, 101–106 (1930)MATHCrossRef
37.
go back to reference Kakaç, S., Pramuanjaroenkij, A., Zhou, X.Y.: A review of numerical modeling of solid oxide fuel cells. Int. J. Hydrog. Energy 32(7), 761–786 (2007)CrossRef Kakaç, S., Pramuanjaroenkij, A., Zhou, X.Y.: A review of numerical modeling of solid oxide fuel cells. Int. J. Hydrog. Energy 32(7), 761–786 (2007)CrossRef
38.
go back to reference Kanouté, P., Boso, D., Chaboche, J., Schrefler, B.: Multiscale methods for composites: a review. Arch. Comput. Methods Eng. 16(1), 31–75 (2009)MATHCrossRef Kanouté, P., Boso, D., Chaboche, J., Schrefler, B.: Multiscale methods for composites: a review. Arch. Comput. Methods Eng. 16(1), 31–75 (2009)MATHCrossRef
39.
go back to reference Khisaeva, Z.F., Ostoja-Starzewski, M.: Thermoelastic damping in nanomechanical resonators with finite wave speeds. J. Therm. Stresses 29(3), 201–216 (2006)CrossRef Khisaeva, Z.F., Ostoja-Starzewski, M.: Thermoelastic damping in nanomechanical resonators with finite wave speeds. J. Therm. Stresses 29(3), 201–216 (2006)CrossRef
40.
go back to reference Kupradze, V.D.: Three-Dimensional Problems of Elasticity and Thermoelasticity. Elsevier, New York (2012) Kupradze, V.D.: Three-Dimensional Problems of Elasticity and Thermoelasticity. Elsevier, New York (2012)
41.
go back to reference Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)MATHCrossRef Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)MATHCrossRef
42.
go back to reference Nakajo, A., Kuebler, J., Faes, A., Vogt, U.F., Schindler, H.J., Chiang, L.K., Modena, S., Van Herle, J., Hocker, T.: Compilation of mechanical properties for the structural analysis of solid oxide fuel cell stacks. Constitutive materials of anode-supported cells. Ceram. Int. 38(5), 3907–3927 (2012)CrossRef Nakajo, A., Kuebler, J., Faes, A., Vogt, U.F., Schindler, H.J., Chiang, L.K., Modena, S., Van Herle, J., Hocker, T.: Compilation of mechanical properties for the structural analysis of solid oxide fuel cell stacks. Constitutive materials of anode-supported cells. Ceram. Int. 38(5), 3907–3927 (2012)CrossRef
43.
go back to reference Nowacki, W.: Thermo Elasticity. Pergamon Press, New York (1962)MATH Nowacki, W.: Thermo Elasticity. Pergamon Press, New York (1962)MATH
44.
go back to reference Nowacki, W.: Dynamical problems of thermo diffusion in solids I. Bull. Pol. Acad. Sci. Technol. 22(1), 43–51 (1974a)MathSciNet Nowacki, W.: Dynamical problems of thermo diffusion in solids I. Bull. Pol. Acad. Sci. Technol. 22(1), 43–51 (1974a)MathSciNet
45.
go back to reference Nowacki, W.: Dynamical problems of thermo diffusion in solids II. Bull. Pol. Acad. Sci. Technol. 22(3), 129–135 (1974b) Nowacki, W.: Dynamical problems of thermo diffusion in solids II. Bull. Pol. Acad. Sci. Technol. 22(3), 129–135 (1974b)
46.
go back to reference Nowacki, W.: Dynamical problems of thermo diffusion in solids III. Bull. Pol. Acad. Sci. Technol. 22(4), 161–170 (1974c)MATH Nowacki, W.: Dynamical problems of thermo diffusion in solids III. Bull. Pol. Acad. Sci. Technol. 22(4), 161–170 (1974c)MATH
47.
go back to reference Nowacki, W.: Dynamic problems of diffusion in solids. Eng. Fracture Mech. 8(1), 261–266 (1976)MATHCrossRef Nowacki, W.: Dynamic problems of diffusion in solids. Eng. Fracture Mech. 8(1), 261–266 (1976)MATHCrossRef
48.
go back to reference Olesiak, Z.S.: Stresses in coated matrices caused by thermodiffusion. Mater. Sci. 29(6), 622–632 (1994)CrossRef Olesiak, Z.S.: Stresses in coated matrices caused by thermodiffusion. Mater. Sci. 29(6), 622–632 (1994)CrossRef
49.
go back to reference Olesiak, Z.S.: Problems of thermodiffusion of deformable solids. Mater. Sci. 34(3), 297–303 (1998)CrossRef Olesiak, Z.S.: Problems of thermodiffusion of deformable solids. Mater. Sci. 34(3), 297–303 (1998)CrossRef
50.
go back to reference Podstrigach, Ya.S.: Differential equations of the problem of thermodiffusion in isotropic deformed solid bodies. Dopovidi Akademii Nauk Ukrainskoi SSR 2, 169–172 (1961) Podstrigach, Ya.S.: Differential equations of the problem of thermodiffusion in isotropic deformed solid bodies. Dopovidi Akademii Nauk Ukrainskoi SSR 2, 169–172 (1961)
51.
go back to reference Pitakthapanaphong, S., Busso, E.P.: Finite element analysis of the fracture behaviour of multi layered systems used in solid oxide fuel cell applications. Model. Simul. Mater. Sci. Eng. 13(4), Article number: 531e40 (2005) Pitakthapanaphong, S., Busso, E.P.: Finite element analysis of the fracture behaviour of multi layered systems used in solid oxide fuel cell applications. Model. Simul. Mater. Sci. Eng. 13(4), Article number: 531e40 (2005)
52.
go back to reference Richardson, G., Denuault, G., Please, C.P.: Multiscale modelling and analysis of lithium-ion battery charge and discharge. J. Eng. Math. 72(1), 41–72 (2012)MathSciNetMATHCrossRef Richardson, G., Denuault, G., Please, C.P.: Multiscale modelling and analysis of lithium-ion battery charge and discharge. J. Eng. Math. 72(1), 41–72 (2012)MathSciNetMATHCrossRef
53.
go back to reference Saad, Y.: Numerical Methods for Large Eigenvalue Problems, vol. 66. SIAM, Philadelphia (2011)MATHCrossRef Saad, Y.: Numerical Methods for Large Eigenvalue Problems, vol. 66. SIAM, Philadelphia (2011)MATHCrossRef
54.
go back to reference Salvadori, A., Bosco, E., Grazioli, D.: A computational homogenization approach for li-ion battery cells: part 1-formulation. J. Mech. Phys. Solids 65, 114–137 (2014)MathSciNetMATHCrossRef Salvadori, A., Bosco, E., Grazioli, D.: A computational homogenization approach for li-ion battery cells: part 1-formulation. J. Mech. Phys. Solids 65, 114–137 (2014)MathSciNetMATHCrossRef
55.
go back to reference Sharma, J., Sharma, R.: Modelling of thermoelastic Rayleigh waves in a solid underlying a fluid layer with varying temperature. Appl. Math. Model. 33(3), 1683–1695 (2009)CrossRef Sharma, J., Sharma, R.: Modelling of thermoelastic Rayleigh waves in a solid underlying a fluid layer with varying temperature. Appl. Math. Model. 33(3), 1683–1695 (2009)CrossRef
56.
go back to reference Sharma, J., Thakur, Naveen T.: Plane harmonic elasto-thermodiffusive waves in semiconductor materials. J. Mech. Mater. Struct. 1(5), 813–835 (2006)CrossRef Sharma, J., Thakur, Naveen T.: Plane harmonic elasto-thermodiffusive waves in semiconductor materials. J. Mech. Mater. Struct. 1(5), 813–835 (2006)CrossRef
57.
go back to reference Sharma, J., Naveen, Thakur T., Singh, Surinder: Propagation characteristics of elasto-thermodiffusive surface waves in semiconductor material half-space. J. Therm. Stresses 30(4), 357–380 (2007)CrossRef Sharma, J., Naveen, Thakur T., Singh, Surinder: Propagation characteristics of elasto-thermodiffusive surface waves in semiconductor material half-space. J. Therm. Stresses 30(4), 357–380 (2007)CrossRef
58.
go back to reference Sharma, J.N., Sharma, Indu, Chand, Subhash: Elasto-thermodiffusive surface waves in a semiconductor half-space underlying a fluid with varying temperature. J. Therm. Stresses 31(10), 956–975 (2008)CrossRef Sharma, J.N., Sharma, Indu, Chand, Subhash: Elasto-thermodiffusive surface waves in a semiconductor half-space underlying a fluid with varying temperature. J. Therm. Stresses 31(10), 956–975 (2008)CrossRef
59.
go back to reference Sherief, H., Hamza, F.A., Saleh, H.A.: The theory of generalized thermoelastic diffusion. Int. J. Eng. Sci. 42(5), 591–608 (2004)MathSciNetMATHCrossRef Sherief, H., Hamza, F.A., Saleh, H.A.: The theory of generalized thermoelastic diffusion. Int. J. Eng. Sci. 42(5), 591–608 (2004)MathSciNetMATHCrossRef
60.
go back to reference Sridhar, A., Kouznetsova, V., Geers, M.: A general multiscale framework for the emergent effective elastodynamics of metamaterials. J. Mech. Phys. Solids 111, 414–433 (2018)MathSciNetCrossRef Sridhar, A., Kouznetsova, V., Geers, M.: A general multiscale framework for the emergent effective elastodynamics of metamaterials. J. Mech. Phys. Solids 111, 414–433 (2018)MathSciNetCrossRef
61.
go back to reference Suiker, A., De Borst, R., Chang, C.: Micro-mechanical modelling of granular material. Part 2: plane wave propagation in infinite media. Acta Mech. 149((1–4)), 181–200 (2001)MATHCrossRef Suiker, A., De Borst, R., Chang, C.: Micro-mechanical modelling of granular material. Part 2: plane wave propagation in infinite media. Acta Mech. 149((1–4)), 181–200 (2001)MATHCrossRef
62.
go back to reference Van der Pol, B., Bremmer, H.: Operational Calculus Based on the Two-Sided Laplace Integral. Cambridge University Press, Cambridge (1950)MATH Van der Pol, B., Bremmer, H.: Operational Calculus Based on the Two-Sided Laplace Integral. Cambridge University Press, Cambridge (1950)MATH
64.
go back to reference Weinberger, H.F.: A First Course in Partial Differential Equations with Complex Variables and Transform Methods. Blaisdell Publishing Company, Waltham (1965)MATH Weinberger, H.F.: A First Course in Partial Differential Equations with Complex Variables and Transform Methods. Blaisdell Publishing Company, Waltham (1965)MATH
65.
go back to reference Zhang, H., Zhang, S., Bi, J.Y., Schrefler, B.: Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach. Int. J. Numer. Methods Eng. 69(1), 87–113 (2007)MathSciNetMATHCrossRef Zhang, H., Zhang, S., Bi, J.Y., Schrefler, B.: Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach. Int. J. Numer. Methods Eng. 69(1), 87–113 (2007)MathSciNetMATHCrossRef
Metadata
Title
Complex frequency band structure of periodic thermo-diffusive materials by Floquet–Bloch theory
Authors
Andrea Bacigalupo
Maria Laura De Bellis
Giorgio Gnecco
Publication date
10-07-2019
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 9/2019
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02416-9

Other articles of this Issue 9/2019

Acta Mechanica 9/2019 Go to the issue

Premium Partners