Skip to main content
Top
Published in: Calcolo 2/2022

01-06-2022

Composite symmetric second derivative general linear methods for Hamiltonian systems

Authors: Behnaz Talebi, Ali Abdi, Gholamreza Hojjati

Published in: Calcolo | Issue 2/2022

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Symmetric second derivative general linear methods (SGLMs) have been already introduced for the numerical solution of time-reversible differential equations. To construct suitable high order methods for such problems, the newly developed composition theory has been successfully used for structure-preserving methods. In this paper, composite symmetric SGLMs are introduced using the generalization of composite theory for general linear methods. Then, we construct symmetric methods of order six by the composition of symmetric SGLMs of order four. Numerical results of the constructed methods verify the theoretical order of accuracy and illustrate that the invariants of motion over long time intervals for reversible Hamiltonian systems are well preserved.
Literature
1.
go back to reference Abdi, A.: Construction of high-order quadratically stable second-derivative general linear methods for the numerical integration of stiff ODEs. J. Comput. Appl. Math. 303, 218–228 (2016)MathSciNetCrossRef Abdi, A.: Construction of high-order quadratically stable second-derivative general linear methods for the numerical integration of stiff ODEs. J. Comput. Appl. Math. 303, 218–228 (2016)MathSciNetCrossRef
2.
go back to reference Abdi, A., Braś, M., Hojjati, G.: On the construction of second derivative diagonally implicit multistage integration methods for ODEs. Appl. Numer. Math. 76, 1–18 (2014)MathSciNetCrossRef Abdi, A., Braś, M., Hojjati, G.: On the construction of second derivative diagonally implicit multistage integration methods for ODEs. Appl. Numer. Math. 76, 1–18 (2014)MathSciNetCrossRef
3.
5.
go back to reference Abdi, A., Hojjati, G.: Maximal order for second derivative general linear methods with Runge–Kutta stability. Appl. Numer. Math. 61, 1046–1058 (2011)MathSciNetCrossRef Abdi, A., Hojjati, G.: Maximal order for second derivative general linear methods with Runge–Kutta stability. Appl. Numer. Math. 61, 1046–1058 (2011)MathSciNetCrossRef
6.
go back to reference Abdi, A., Hojjati, G.: Implementation of Nordsieck second derivative methods for stiff ODEs. Appl. Numer. Math. 94, 241–253 (2015)MathSciNetCrossRef Abdi, A., Hojjati, G.: Implementation of Nordsieck second derivative methods for stiff ODEs. Appl. Numer. Math. 94, 241–253 (2015)MathSciNetCrossRef
7.
go back to reference Abdi, A., Hojjati, G.: Projection of second derivative methods for ordinary differential equations with invariants. Bull. Iran. Math. Soc. 46, 99–113 (2020)MathSciNetCrossRef Abdi, A., Hojjati, G.: Projection of second derivative methods for ordinary differential equations with invariants. Bull. Iran. Math. Soc. 46, 99–113 (2020)MathSciNetCrossRef
8.
go back to reference Butcher, J.C.: On the convergence of numerical solutions to ordinary differential equations. Math. Comput. 20, 1–10 (1966)MathSciNetCrossRef Butcher, J.C.: On the convergence of numerical solutions to ordinary differential equations. Math. Comput. 20, 1–10 (1966)MathSciNetCrossRef
10.
go back to reference Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2016)CrossRef Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2016)CrossRef
11.
go back to reference Butcher, J.C.: Dealing with parasitic behaviour in G-symplectic integrators. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds.) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 120. Springer, Berlin (2013) Butcher, J.C.: Dealing with parasitic behaviour in G-symplectic integrators. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds.) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 120. Springer, Berlin (2013)
12.
go back to reference Butcher, J.C., D’Ambrosio, R.: Partitioned general linear methods for separable Hamiltonian problems. Appl. Numer. Math. 117, 69–86 (2017)MathSciNetCrossRef Butcher, J.C., D’Ambrosio, R.: Partitioned general linear methods for separable Hamiltonian problems. Appl. Numer. Math. 117, 69–86 (2017)MathSciNetCrossRef
13.
14.
go back to reference Butcher, J.C., Habib, Y., Hill, A.T., Norton, T.J.T.: The control of parasitism in G-symplectic methods. SIAM J. Numer. Anal. 52, 2440–2465 (2014)MathSciNetCrossRef Butcher, J.C., Habib, Y., Hill, A.T., Norton, T.J.T.: The control of parasitism in G-symplectic methods. SIAM J. Numer. Anal. 52, 2440–2465 (2014)MathSciNetCrossRef
15.
16.
go back to reference Cash, J.R.: Second derivative extended backward differentiation formulas for the numerical integration of stiff systems. SIAM J. Numer. Anal. 18, 21–36 (1981)MathSciNetCrossRef Cash, J.R.: Second derivative extended backward differentiation formulas for the numerical integration of stiff systems. SIAM J. Numer. Anal. 18, 21–36 (1981)MathSciNetCrossRef
17.
18.
go back to reference Console, P., Hairer, E., Lubich, C.: Symmetric multistep methods for constrained Hamiltonian systems. Numer. Math. 124, 517–539 (2013)MathSciNetCrossRef Console, P., Hairer, E., Lubich, C.: Symmetric multistep methods for constrained Hamiltonian systems. Numer. Math. 124, 517–539 (2013)MathSciNetCrossRef
19.
go back to reference D’Ambrosio, R., De Martino, G., Paternoster, B.: Numerical integration of Hamiltonian problems by G-symplectic methods. Adv. Compute. Math. 40, 553–575 (2014)MathSciNetMATH D’Ambrosio, R., De Martino, G., Paternoster, B.: Numerical integration of Hamiltonian problems by G-symplectic methods. Adv. Compute. Math. 40, 553–575 (2014)MathSciNetMATH
20.
go back to reference D’Ambrosio, R., Hairer, E.: Long-term stability of multi-value methods for ordinary differential equations. J. Sci. Comput. 60, 627–640 (2014)MathSciNetCrossRef D’Ambrosio, R., Hairer, E.: Long-term stability of multi-value methods for ordinary differential equations. J. Sci. Comput. 60, 627–640 (2014)MathSciNetCrossRef
21.
go back to reference Enright, W.: Second derivative multistep methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 11, 321–331 (1974)MathSciNetCrossRef Enright, W.: Second derivative multistep methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 11, 321–331 (1974)MathSciNetCrossRef
22.
go back to reference Habib, Y.: Long-Term Behaviour of G-Symplectic Methods. Ph.D. Thesis, The University of Auckland (2010) Habib, Y.: Long-Term Behaviour of G-Symplectic Methods. Ph.D. Thesis, The University of Auckland (2010)
24.
go back to reference Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer Science and Business Media, Berlin (2006)MATH Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer Science and Business Media, Berlin (2006)MATH
26.
go back to reference Hojjati, G., Rahimi Ardabili, M.Y., Hosseini, S.M.: New second derivative multistep methods for stiff systems. Appl. Math. Model. 30, 466–476 (2006)CrossRef Hojjati, G., Rahimi Ardabili, M.Y., Hosseini, S.M.: New second derivative multistep methods for stiff systems. Appl. Math. Model. 30, 466–476 (2006)CrossRef
27.
go back to reference Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, New Jersey (2009)CrossRef Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, New Jersey (2009)CrossRef
28.
go back to reference McLachlan, R.I.: On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput. 16, 151–168 (1995)MathSciNetCrossRef McLachlan, R.I.: On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput. 16, 151–168 (1995)MathSciNetCrossRef
29.
go back to reference Murua, A., Sanz-Serna, J.M.: Order conditions for numerical integrators obtained by composing simpler integrators. Philos. Trans. R. Soc. A 357, 1079–1100 (1999)MathSciNetCrossRef Murua, A., Sanz-Serna, J.M.: Order conditions for numerical integrators obtained by composing simpler integrators. Philos. Trans. R. Soc. A 357, 1079–1100 (1999)MathSciNetCrossRef
30.
go back to reference Hosseini Nasab, M., Hojjati, G., Abdi, A.: G-symplectic second derivative general linear methods for Hamiltonian problems. J. Comput. Appl. Math. 313, 486–498 (2017)MathSciNetCrossRef Hosseini Nasab, M., Hojjati, G., Abdi, A.: G-symplectic second derivative general linear methods for Hamiltonian problems. J. Comput. Appl. Math. 313, 486–498 (2017)MathSciNetCrossRef
31.
go back to reference Hosseini Nasab, M., Abdi, A., Hojjati, G.: Symmetric second derivative integration methods. J. Comput. Appl. Math. 330, 618–629 (2018)MathSciNetCrossRef Hosseini Nasab, M., Abdi, A., Hojjati, G.: Symmetric second derivative integration methods. J. Comput. Appl. Math. 330, 618–629 (2018)MathSciNetCrossRef
32.
go back to reference Norton, T.J.T.: Sructure-Preserving General Linear Methods. Ph.D. Thesis, University of Bath (2015) Norton, T.J.T.: Sructure-Preserving General Linear Methods. Ph.D. Thesis, University of Bath (2015)
33.
go back to reference Norton, T.J.T.: Composite symmetric general linear methods (COSY-GLMs) for the long-time integration of revesible Hamiltonian systems. BIT Numer. Math. 58, 397–421 (2018)CrossRef Norton, T.J.T.: Composite symmetric general linear methods (COSY-GLMs) for the long-time integration of revesible Hamiltonian systems. BIT Numer. Math. 58, 397–421 (2018)CrossRef
34.
go back to reference Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146, 319–323 (1990)MathSciNetCrossRef Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146, 319–323 (1990)MathSciNetCrossRef
35.
go back to reference Tsai, A.Y., Chan, R.P., Wang, S.: Two-derivative Runge–Kutta methods for PDEs using a novel discretization approach. Numer. Algorithm 65, 687–703 (2014)MathSciNetCrossRef Tsai, A.Y., Chan, R.P., Wang, S.: Two-derivative Runge–Kutta methods for PDEs using a novel discretization approach. Numer. Algorithm 65, 687–703 (2014)MathSciNetCrossRef
Metadata
Title
Composite symmetric second derivative general linear methods for Hamiltonian systems
Authors
Behnaz Talebi
Ali Abdi
Gholamreza Hojjati
Publication date
01-06-2022
Publisher
Springer International Publishing
Published in
Calcolo / Issue 2/2022
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-022-00458-5

Other articles of this Issue 2/2022

Calcolo 2/2022 Go to the issue

Premium Partner