Skip to main content
Top
Published in: Calcolo 2/2022

01-06-2022 | Original Research

Frequency-explicit approximability estimates for time-harmonic Maxwell’s equations

Authors: Théophile Chaumont-Frelet, Patrick Vega

Published in: Calcolo | Issue 2/2022

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider time-harmonic Maxwell’s equations set in a heterogeneous medium with perfectly conducting boundary conditions. Given a divergence-free right-hand side lying in \(L^2\), we provide a frequency-explicit approximability estimate measuring the difference between the corresponding solution and its best approximation by high-order Nédélec finite elements. Such an approximability estimate is crucial in both the a priori and a posteriori error analysis of finite element discretizations of Maxwell’s equations, but the derivation is not trivial. Indeed, it is hard to take advantage of high-order polynomials given that the right-hand side only exhibits \(L^2\) regularity. We proceed in line with previously obtained results for the simpler setting of the scalar Helmholtz equation and propose a regularity splitting of the solution. In turn, this splitting yields sharp approximability estimates generalizing known results for the scalar Helmholtz equation and showing the interest of high-order methods.
Footnotes
1
The authors believe it is of interest to explicitly mention \(c_s\) proofs, since at least in principle, the regularity splitting results may apply in cases where \(c_s\) is not obtain via Theorem 1.
 
Literature
1.
go back to reference Adams, R., Fournier, J.: Sobolev Spaces. Academic Press, New York (2003)MATH Adams, R., Fournier, J.: Sobolev Spaces. Academic Press, New York (2003)MATH
2.
go back to reference Assous, F., Ciarlet, P., Jr., Labrunie, S.: Mathematical Foundations of Computational Electromagnetism, Applied Mathematical Sciences, vol. 198. Springer, Cham (2018)MATH Assous, F., Ciarlet, P., Jr., Labrunie, S.: Mathematical Foundations of Computational Electromagnetism, Applied Mathematical Sciences, vol. 198. Springer, Cham (2018)MATH
3.
go back to reference Bériot, H., Prinn, A., Gabard, G.: Efficient implementation of high-order finite elements for Helmholtz problems. Int. J. Numer. Methods Eng. 106, 213–240 (2016)MathSciNetCrossRef Bériot, H., Prinn, A., Gabard, G.: Efficient implementation of high-order finite elements for Helmholtz problems. Int. J. Numer. Methods Eng. 106, 213–240 (2016)MathSciNetCrossRef
4.
go back to reference Chaumont-Frelet, T.: Mixed finite element discretization of acoustic Helmholtz problems with high wavenumbers. Calcolo 56, 1–27 (2019)MathSciNetCrossRef Chaumont-Frelet, T.: Mixed finite element discretization of acoustic Helmholtz problems with high wavenumbers. Calcolo 56, 1–27 (2019)MathSciNetCrossRef
5.
go back to reference Chaumont-Frelet, T., Ern, A., Vohralík, M.: On the derivation of guaranteed and \(p\)-robust a posteriori error estimates for the Helmholtz equation. Numer. Math. 148, 525–573 (2021)MathSciNetCrossRef Chaumont-Frelet, T., Ern, A., Vohralík, M.: On the derivation of guaranteed and \(p\)-robust a posteriori error estimates for the Helmholtz equation. Numer. Math. 148, 525–573 (2021)MathSciNetCrossRef
6.
go back to reference Chaumont-Frelet, T., Nicaise, S.: Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems. IMA J. Numer. Anal. 40, 1503–1543 (2020)MathSciNetCrossRef Chaumont-Frelet, T., Nicaise, S.: Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems. IMA J. Numer. Anal. 40, 1503–1543 (2020)MathSciNetCrossRef
7.
go back to reference Chaumont-Frelet, T., Nicaise, S., Pardo, D.: Finite element approximation of electromagnetic fields using nonfitting meshes for Geophysics. SIAM J. Numer. Anal. 56, 2288–2321 (2018)MathSciNetCrossRef Chaumont-Frelet, T., Nicaise, S., Pardo, D.: Finite element approximation of electromagnetic fields using nonfitting meshes for Geophysics. SIAM J. Numer. Anal. 56, 2288–2321 (2018)MathSciNetCrossRef
8.
go back to reference Dörfler, W., Sauter, S.: A posteriori error estimation for highly indefinite Helmholtz problems. Comput. Methods Appl. Math. 13, 333–347 (2013)MathSciNetCrossRef Dörfler, W., Sauter, S.: A posteriori error estimation for highly indefinite Helmholtz problems. Comput. Methods Appl. Math. 13, 333–347 (2013)MathSciNetCrossRef
9.
go back to reference Ern, A., Guermond, J.-L.: Semiclassical Analysis, Graduate Studies in Mathematics, vol. 138. American Mathematical Society (2012) Ern, A., Guermond, J.-L.: Semiclassical Analysis, Graduate Studies in Mathematics, vol. 138. American Mathematical Society (2012)
10.
go back to reference Ern, A., Guermond, J.-L.: Analysis of the edge finite element approximation of the Maxwell equations with low regularity solutions. Comput. Math. Appl. 75, 918–932 (2018)MathSciNetCrossRef Ern, A., Guermond, J.-L.: Analysis of the edge finite element approximation of the Maxwell equations with low regularity solutions. Comput. Math. Appl. 75, 918–932 (2018)MathSciNetCrossRef
11.
go back to reference Ern,A., Guermond, J.-L.: Finite Elements I. Approximation and Interpolation, Texts in Applied Mathematics, vol. 72. Springer Nature Switzerland (2021) Ern,A., Guermond, J.-L.: Finite Elements I. Approximation and Interpolation, Texts in Applied Mathematics, vol. 72. Springer Nature Switzerland (2021)
12.
go back to reference Fernandes, P., Gilardi, G.: Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Methods Appl. Sci. 47, 2872–2896 (1997)MATH Fernandes, P., Gilardi, G.: Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Methods Appl. Sci. 47, 2872–2896 (1997)MATH
14.
go back to reference Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer (1986) Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer (1986)
15.
go back to reference Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. Part II: the \(h\)-\(p\)-version of the FEM. SIAM J. Numer. Anal. 34, 315–358 (1997)MathSciNetCrossRef Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. Part II: the \(h\)-\(p\)-version of the FEM. SIAM J. Numer. Anal. 34, 315–358 (1997)MathSciNetCrossRef
16.
go back to reference Lafontaine, D., Spence, E.A., Wunsch, J.: Wavenumber-explicit convergence of the \(hp\)-FEM for the full-space heterogeneous Helmholtz equation with smooth coefficients (2020). arXiv:2010.00585 Lafontaine, D., Spence, E.A., Wunsch, J.: Wavenumber-explicit convergence of the \(hp\)-FEM for the full-space heterogeneous Helmholtz equation with smooth coefficients (2020). arXiv:​2010.​00585
17.
go back to reference Melenk, J.M., Sauter, S.: Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49, 1210–1243 (2011)MathSciNetCrossRef Melenk, J.M., Sauter, S.: Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49, 1210–1243 (2011)MathSciNetCrossRef
18.
go back to reference Melenk, J.M., Sauter, S.A.: Wavenumber-explicit \(hp\)-FEM analysis for Maxwell’s equations with transparent boundary conditions. Found. Comput. Math. 21, 125–241 (2021)MathSciNetCrossRef Melenk, J.M., Sauter, S.A.: Wavenumber-explicit \(hp\)-FEM analysis for Maxwell’s equations with transparent boundary conditions. Found. Comput. Math. 21, 125–241 (2021)MathSciNetCrossRef
19.
go back to reference Sauter, S., Zech, J.: A posteriori error estimation of \(hp\)-dG finite element methods for highly indefinite Helmholtz problems. SIAM J. Numer. Anal. 53, 2414–2440 (2015)MathSciNetCrossRef Sauter, S., Zech, J.: A posteriori error estimation of \(hp\)-dG finite element methods for highly indefinite Helmholtz problems. SIAM J. Numer. Anal. 53, 2414–2440 (2015)MathSciNetCrossRef
20.
go back to reference Schatz, A.H.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comput. 28, 959–962 (1974)MathSciNetCrossRef Schatz, A.H.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comput. 28, 959–962 (1974)MathSciNetCrossRef
21.
go back to reference Taus, M., Zepeda-Núñez, L., Hewett, R., Demanet, L.: Pollution-free and fast hybridizable discontinuous Galerkin solvers for the high-frequency Helmholtz equation. In: Proc, SEG annual meeting (Houston) (2017) Taus, M., Zepeda-Núñez, L., Hewett, R., Demanet, L.: Pollution-free and fast hybridizable discontinuous Galerkin solvers for the high-frequency Helmholtz equation. In: Proc, SEG annual meeting (Houston) (2017)
22.
24.
go back to reference Zhong, L., Shu, S., Wittum, G., Xu, J.: Optimal error estimates for Nédélec edge elements for time-harmonic Maxwell’s equations. J. Comput. Math. 27, 563–572 (2009)MathSciNetCrossRef Zhong, L., Shu, S., Wittum, G., Xu, J.: Optimal error estimates for Nédélec edge elements for time-harmonic Maxwell’s equations. J. Comput. Math. 27, 563–572 (2009)MathSciNetCrossRef
Metadata
Title
Frequency-explicit approximability estimates for time-harmonic Maxwell’s equations
Authors
Théophile Chaumont-Frelet
Patrick Vega
Publication date
01-06-2022
Publisher
Springer International Publishing
Published in
Calcolo / Issue 2/2022
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-022-00464-7

Other articles of this Issue 2/2022

Calcolo 2/2022 Go to the issue

Premium Partner