Skip to main content
Erschienen in: Foundations of Computational Mathematics 1/2021

06.04.2020

Wavenumber-Explicit hp-FEM Analysis for Maxwell’s Equations with Transparent Boundary Conditions

verfasst von: Jens M. Melenk, Stefan A. Sauter

Erschienen in: Foundations of Computational Mathematics | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The time-harmonic Maxwell equations at high wavenumber k are discretized by edge elements of degree p on a mesh of width h. For the case of a ball as the computational domain and exact, transparent boundary conditions, we show quasi-optimality of the Galerkin method under the k-explicit scale resolution condition that (a) kh/p is sufficient small and (b) \(p/\ln k\) is bounded from below.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1

\(A\lesssim B\) is shorthand for \(A \le C B\) for some \(C>0\) that is independent of the wavenumber k, the mesh size h, the polynomial degree p, as well as functions appearing in A and B.

 
2

The condition \(k\ge 1\) can be replaced by \(k\ge k_{0}>0\). Our estimates remain valid for all choices of \(k_{0}>0\). The constants in the estimates are uniform for all \(k\ge k_{0}\), while they depend continuously on \(k_{0}\) and, possibly, become large as \(k_{0}\rightarrow 0\). We use (2.2) simply to reduce technicalities.

 
3

The function spaces appearing in these statements will be introduced in Sect. 2.3.

 
4

This follows by representing \(T_{k}\) by trace operators and boundary/volume potentials for the electric Maxwell equation as, e.g., explained in [11], and by applying the rules for computing the adjoint of composite operators.

 
5

We write \({\tilde{\eta }}_{\ell }\) for an approximation property which involves a solution operator and \(\eta _{\ell }\) for a “pure” approximation property for a given space/set of functions.

 
6

For the last relation, we have estimated \(\left\| \cdot \right\| _{{\text {curl}},\varOmega ,1} \le \left\| \cdot \right\| _{{\text {curl}},\varOmega ,k}\) in (5.30) (using (2.2)) to simplify technicalities.

 
7

The third condition is not essential but leads to a significant simplification as the ensuing (5.37) effects a decoupling of the elliptic system (5.38) into three scalar problems at 0.

 
8

In [40, Def. 5.3, Thm. B.4] the element-by-element construction of the polynomial approximation on the reference element only fixes \(\varPi _{p}\) on \(\partial \widehat{K}\). The operator \(\varPi _{p}\) is fully determined by adding a final minimization step to fix the interior degrees of freedom on the reference element.

 
9

There is a sign error in the second last relation on [30, p.271].

 
10

the factor 3 in \(3C_{I}\) is due to the summation over i and likely suboptimal.

 
Literatur
  1. R. A. Adams and J. J. F. Fournier. Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition, 2003.
  2. M. Ainsworth. Discrete Dispersion Relation for \(hp\)-Finite Element Approximation at High Wave Number. SIAM J. Numer. Anal., 42(2):553–575, 2004.MathSciNetMATH
  3. M. Ainsworth. Dispersive properties of high-order Nédélec/edge element approximation of the time-harmonic Maxwell equations. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 362(1816):471–491, 2004.MathSciNetMATH
  4. M. Ainsworth, P. Monk, and W. Muniz. Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput., 27(1-3):5–40, 2006.MathSciNetMATH
  5. M. Ainsworth and H. A. Wajid. Dispersive and dissipative behavior of the spectral element method. SIAM J. Numer. Anal., 47(5):3910–3937, 2009.MathSciNetMATH
  6. M. Ainsworth and H. A. Wajid. Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration. SIAM J. Numer. Anal., 48(1):346–371, 2010.MathSciNetMATH
  7. I. Babuška and S. A. Sauter. Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers. SIAM J. Numer. Anal., 34(6):2392–2423, 1997.MathSciNetMATH
  8. M. Bernkopf and J. Melenk. Analysis of the \(hp\)-version of a first order system least squares method for the helmholtz equation. In T. Apel, U. Langer, A. Meyer, and O. Steinbach, editors, Advanced Finite Element Methods with Applications–Selected Papers from the 30th Chemnitz FEM Symposium 2017, volume 128 of Lecture Notes in Computational Science and Engineering, pages 57–84. Springer Verlag, 2019.
  9. A. Buffa. Remarks on the discretization of some noncoercive operator with applications to heterogeneous Maxwell equations. SIAM J. Numer. Anal., 43(1):1–18, 2005.MathSciNetMATH
  10. A. Buffa, M. Costabel, and D. Sheen. On traces for \({\bf H}({\bf curl},\Omega )\) in Lipschitz domains. J. Math. Anal. Appl., 276(2):845–867, 2002.MathSciNetMATH
  11. A. Buffa and R. Hiptmair. Galerkin boundary element methods for electromagnetic scattering. In Topics in computational wave propagation, volume 31 of Lect. Notes Comput. Sci. Eng., pages 83–124. Springer, Berlin, 2003.
  12. A. Buffa, R. Hiptmair, T. von Petersdorff, and C. Schwab. Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numer. Math., 95(3):459–485, 2003.MathSciNetMATH
  13. S. Caorsi, P. Fernandes, and M. Raffetto. On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal., 38(2):580–607, 2000.MathSciNetMATH
  14. M. Cessenat. Mathematical methods in electromagnetism. World Scientific Publishing Co., Inc., River Edge, NJ, 1996.MATH
  15. H. Chen, P. Lu, and X. Xu. A hybridizable discontinuous Galerkin method for the Helmholtz equation with high wave number. SIAM J. Numer. Anal., 51(4):2166–2188, 2013.MathSciNetMATH
  16. H. Chen and W. Qiu. A first order system least squares method for the Helmholtz equation. J. Comput. Appl. Math., 309:145–162, 2017.MathSciNetMATH
  17. M. Costabel and A. McIntosh. On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z., 265(2):297–320, 2010.MathSciNetMATH
  18. L. Demkowicz. Polynomial exact sequences and projection-based interpolation with applications to Maxwell’s equations. In D. Boffi, F. Brezzi, L. Demkowicz, L. Durán, R. Falk, and M. Fortin, editors, Mixed Finite Elements, Compatibility Conditions, and Applications, volume 1939 of Lectures Notes in Mathematics. Springer Verlag, 2008.
  19. L. Demkowicz and A. Buffa. \(H^1\), \(H({\rm curl})\) and \(H({\rm div})\)-conforming projection-based interpolation in three dimensions. Quasi-optimal \(p\)-interpolation estimates. Comput. Methods Appl. Mech. Engrg., 194(2-5):267–296, 2005.MathSciNetMATH
  20. L. Demkowicz, J. Gopalakrishnan, I. Muga, and J. Zitelli. Wavenumber explicit analysis of a DPG method for the multidimensional Helmholtz equation. Comput. Methods Appl. Mech. Eng., 213/216:126–138, 2012.MathSciNetMATH
  21. S. Esterhazy and J. M. Melenk. On stability of discretizations of the Helmholtz equation. In I. Graham, T. Hou, O. Lakkis, and R. Scheichl, editors, Numerical Analysis of Multiscale Problems, volume 83 of Lect. Notes Comput. Sci. Eng., pages 285–324. Springer, Berlin, 2012.
  22. X. Feng and H. Wu. Discontinuous Galerkin methods for the Helmholtz equation with large wave number. SIAM J. Numer. Anal., 47(4):2872–2896, 2009.MathSciNetMATH
  23. X. Feng and H. Wu. \(hp\)-discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comput., 80:1997–2024, 2011.MathSciNetMATH
  24. X. Feng and H. Wu. An absolutely stable discontinuous Galerkin method for the indefinite time-harmonic Maxwell equations with large wave number. SIAM J. Numer. Anal., 52(5):2356–2380, 2014.MathSciNetMATH
  25. X. Feng and Y. Xing. Absolutely stable local discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comput., 82(283):1269–1296, 2013.MathSciNetMATH
  26. R. Hiptmair. Finite elements in computational electromagnetism. Acta Numer., 11:237–339, 2002.MathSciNetMATH
  27. F. Ihlenburg. Finite Element Analysis of Acousting Scattering. Springer, New York, 1998.MATH
  28. F. Ihlenburg and I. Babuška. Finite Element Solution to the Helmholtz Equation with High Wave Number. Part I: The h-version of the FEM. Comput. Math. Appl., 39(9):9–37, 1995.MATH
  29. F. Ihlenburg and I. Babuška. Finite Element Solution to the Helmholtz Equation with High Wave Number. Part II: The h-p version of the FEM. Siam J. Num. Anal., 34(1):315–358, 1997.MATH
  30. A. Kirsch and F. Hettlich. The mathematical theory of time-harmonic Maxwell’s equations. Springer, Cham, 2015.MATH
  31. M. Löhndorf and J. M. Melenk. Wavenumber-explicit \(hp\)-BEM for high frequency scattering. SIAM J. Numer. Anal., 49(6):2340–2363, 2011.MathSciNetMATH
  32. P. Lu, H. Chen, and W. Qiu. An absolutely stable \(hp\)-HDG method for the time-harmonic Maxwell equations with high wave number. Math. Comput., 86(306):1553–1577, 2017.MathSciNetMATH
  33. W. McLean. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge, Univ. Press, 2000.MATH
  34. J. M. Melenk. On Generalized Finite Element Methods. PhD thesis, University of Maryland at College Park, 1995.
  35. J. M. Melenk. hp-Finite Element Methods for Singular Perturbations. Springer, Berlin, 2002.MATH
  36. J. M. Melenk. On approximation in meshless methods. In Frontiers of numerical analysis, pages 65–141. Springer, Berlin, 2005.
  37. J. M. Melenk. Mapping properties of combined field Helmholtz boundary integral operators. SIAM J. Math. Anal., 44(4):2599–2636, 2012.MathSciNetMATH
  38. J. M. Melenk, A. Parsania, and S. A. Sauter. General DG-methods for highly indefinite Helmholtz problems. J. Sci. Comput., 57(3):536–581, 2013.MathSciNetMATH
  39. J. M. Melenk and C. Rojik. On commuting \(p\)-version projection-based interpolation on tetrahedra. Math. Comput., 89:45–87, 2020.MathSciNetMATH
  40. J. M. Melenk and S. A. Sauter. Convergence Analysis for Finite Element Discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary condition. Math. Comput., 79:1871–1914, 2010.MathSciNetMATH
  41. J. M. Melenk and S. A. Sauter. Wave-Number Explicit Convergence Analysis for Galerkin Discretizations of the Helmholtz Equation. SIAM J. Numer. Anal., 49(3):1210–1243, 2011.MathSciNetMATH
  42. J. M. Melenk and S. A. Sauter. Wavenumber-explicit \(hp\)-FEM analysis for Maxwell’s equations with impedance boundary conditions. Technical report, in prep.
  43. P. Monk. Finite element methods for Maxwell’s equations. Oxford University Press, New York, 2003.MATH
  44. P. Monk. A simple proof of convergence for an edge element discretization of Maxwell’s equations. In Computational electromagnetics (Kiel, 2001), volume 28 of Lect. Notes Comput. Sci. Eng., pages 127–141. Springer, Berlin, 2003.
  45. C. Morrey. Multiple Integrals in the Calculus of Variations. Springer, Berlin, 1966.MATH
  46. J.-C. Nédélec. Mixed finite elements in \({{\bf R}}^{3}\). Numer. Math., 35(3):315–341, 1980.MathSciNetMATH
  47. J. C. Nédélec. Acoustic and Electromagnetic Equations. Springer, New York, 2001.MATH
  48. S. Nicaise and J. Tomezyk. Convergence analysis of a hp-finite element approximation of the time-harmonic Maxwell equations with impedance boundary conditions in domains with an analytic boundary. Technical report, hal-ouvertes, Mar. 2019. https://​hal.​archives-ouvertes.​fr/​hal-02063271.
  49. S. Nicaise and J. Tomezyk. The time-harmonic Maxwell equations with impedance boundary conditions in polyhedral domains. In U. Langer, D. Pauly, and S. Repin, editors, Maxwell’s Equations: Analysis and Numerics, Radon Series on Computational and Applied Mathematics 24, pages 285–340, Berlin, 2019. De Gruyter.
  50. S. Petrides and L. F. Demkowicz. An adaptive DPG method for high frequency time-harmonic wave propagation problems. Comput. Math. Appl., 74(8):1999–2017, 2017.MathSciNetMATH
  51. S. A. Sauter and C. Schwab. Boundary Element Methods. Springer, Heidelberg, 2010.MATH
  52. I. Terrasse. Résolution mathématique et numérique des équations de Maxwell instationnaires par uns méthode de potentiels retardés. PhD thesis, Ecole Polytechnique, Paris, 1993.
  53. A. Veit. Convolution Quadrature for Time-Dependent Maxwell Equations. Master’s thesis, Institut für Mathematik, Universität Zürich, 2009.
  54. L. Zhu and H. Wu. Preasymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part II: \(hp\) version. SIAM J. Numer. Anal., 51(3):1828–1852, 2013.MathSciNetMATH
Metadaten
Titel
Wavenumber-Explicit hp-FEM Analysis for Maxwell’s Equations with Transparent Boundary Conditions
verfasst von
Jens M. Melenk
Stefan A. Sauter
Publikationsdatum
06.04.2020
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 1/2021
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-020-09452-1

Weitere Artikel der Ausgabe 1/2021

Foundations of Computational Mathematics 1/2021 Zur Ausgabe

Premium Partner