Skip to main content
Erschienen in: Calcolo 2/2022

01.06.2022 | Original Research

Frequency-explicit approximability estimates for time-harmonic Maxwell’s equations

verfasst von: Théophile Chaumont-Frelet, Patrick Vega

Erschienen in: Calcolo | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider time-harmonic Maxwell’s equations set in a heterogeneous medium with perfectly conducting boundary conditions. Given a divergence-free right-hand side lying in \(L^2\), we provide a frequency-explicit approximability estimate measuring the difference between the corresponding solution and its best approximation by high-order Nédélec finite elements. Such an approximability estimate is crucial in both the a priori and a posteriori error analysis of finite element discretizations of Maxwell’s equations, but the derivation is not trivial. Indeed, it is hard to take advantage of high-order polynomials given that the right-hand side only exhibits \(L^2\) regularity. We proceed in line with previously obtained results for the simpler setting of the scalar Helmholtz equation and propose a regularity splitting of the solution. In turn, this splitting yields sharp approximability estimates generalizing known results for the scalar Helmholtz equation and showing the interest of high-order methods.
Fußnoten
1
The authors believe it is of interest to explicitly mention \(c_s\) proofs, since at least in principle, the regularity splitting results may apply in cases where \(c_s\) is not obtain via Theorem 1.
 
Literatur
1.
Zurück zum Zitat Adams, R., Fournier, J.: Sobolev Spaces. Academic Press, New York (2003)MATH Adams, R., Fournier, J.: Sobolev Spaces. Academic Press, New York (2003)MATH
2.
Zurück zum Zitat Assous, F., Ciarlet, P., Jr., Labrunie, S.: Mathematical Foundations of Computational Electromagnetism, Applied Mathematical Sciences, vol. 198. Springer, Cham (2018)MATH Assous, F., Ciarlet, P., Jr., Labrunie, S.: Mathematical Foundations of Computational Electromagnetism, Applied Mathematical Sciences, vol. 198. Springer, Cham (2018)MATH
3.
Zurück zum Zitat Bériot, H., Prinn, A., Gabard, G.: Efficient implementation of high-order finite elements for Helmholtz problems. Int. J. Numer. Methods Eng. 106, 213–240 (2016)MathSciNetCrossRef Bériot, H., Prinn, A., Gabard, G.: Efficient implementation of high-order finite elements for Helmholtz problems. Int. J. Numer. Methods Eng. 106, 213–240 (2016)MathSciNetCrossRef
4.
Zurück zum Zitat Chaumont-Frelet, T.: Mixed finite element discretization of acoustic Helmholtz problems with high wavenumbers. Calcolo 56, 1–27 (2019)MathSciNetCrossRef Chaumont-Frelet, T.: Mixed finite element discretization of acoustic Helmholtz problems with high wavenumbers. Calcolo 56, 1–27 (2019)MathSciNetCrossRef
5.
Zurück zum Zitat Chaumont-Frelet, T., Ern, A., Vohralík, M.: On the derivation of guaranteed and \(p\)-robust a posteriori error estimates for the Helmholtz equation. Numer. Math. 148, 525–573 (2021)MathSciNetCrossRef Chaumont-Frelet, T., Ern, A., Vohralík, M.: On the derivation of guaranteed and \(p\)-robust a posteriori error estimates for the Helmholtz equation. Numer. Math. 148, 525–573 (2021)MathSciNetCrossRef
6.
Zurück zum Zitat Chaumont-Frelet, T., Nicaise, S.: Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems. IMA J. Numer. Anal. 40, 1503–1543 (2020)MathSciNetCrossRef Chaumont-Frelet, T., Nicaise, S.: Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems. IMA J. Numer. Anal. 40, 1503–1543 (2020)MathSciNetCrossRef
7.
Zurück zum Zitat Chaumont-Frelet, T., Nicaise, S., Pardo, D.: Finite element approximation of electromagnetic fields using nonfitting meshes for Geophysics. SIAM J. Numer. Anal. 56, 2288–2321 (2018)MathSciNetCrossRef Chaumont-Frelet, T., Nicaise, S., Pardo, D.: Finite element approximation of electromagnetic fields using nonfitting meshes for Geophysics. SIAM J. Numer. Anal. 56, 2288–2321 (2018)MathSciNetCrossRef
8.
Zurück zum Zitat Dörfler, W., Sauter, S.: A posteriori error estimation for highly indefinite Helmholtz problems. Comput. Methods Appl. Math. 13, 333–347 (2013)MathSciNetCrossRef Dörfler, W., Sauter, S.: A posteriori error estimation for highly indefinite Helmholtz problems. Comput. Methods Appl. Math. 13, 333–347 (2013)MathSciNetCrossRef
9.
Zurück zum Zitat Ern, A., Guermond, J.-L.: Semiclassical Analysis, Graduate Studies in Mathematics, vol. 138. American Mathematical Society (2012) Ern, A., Guermond, J.-L.: Semiclassical Analysis, Graduate Studies in Mathematics, vol. 138. American Mathematical Society (2012)
10.
Zurück zum Zitat Ern, A., Guermond, J.-L.: Analysis of the edge finite element approximation of the Maxwell equations with low regularity solutions. Comput. Math. Appl. 75, 918–932 (2018)MathSciNetCrossRef Ern, A., Guermond, J.-L.: Analysis of the edge finite element approximation of the Maxwell equations with low regularity solutions. Comput. Math. Appl. 75, 918–932 (2018)MathSciNetCrossRef
11.
Zurück zum Zitat Ern,A., Guermond, J.-L.: Finite Elements I. Approximation and Interpolation, Texts in Applied Mathematics, vol. 72. Springer Nature Switzerland (2021) Ern,A., Guermond, J.-L.: Finite Elements I. Approximation and Interpolation, Texts in Applied Mathematics, vol. 72. Springer Nature Switzerland (2021)
12.
Zurück zum Zitat Fernandes, P., Gilardi, G.: Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Methods Appl. Sci. 47, 2872–2896 (1997)MATH Fernandes, P., Gilardi, G.: Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Methods Appl. Sci. 47, 2872–2896 (1997)MATH
14.
Zurück zum Zitat Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer (1986) Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer (1986)
15.
Zurück zum Zitat Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. Part II: the \(h\)-\(p\)-version of the FEM. SIAM J. Numer. Anal. 34, 315–358 (1997)MathSciNetCrossRef Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. Part II: the \(h\)-\(p\)-version of the FEM. SIAM J. Numer. Anal. 34, 315–358 (1997)MathSciNetCrossRef
16.
Zurück zum Zitat Lafontaine, D., Spence, E.A., Wunsch, J.: Wavenumber-explicit convergence of the \(hp\)-FEM for the full-space heterogeneous Helmholtz equation with smooth coefficients (2020). arXiv:2010.00585 Lafontaine, D., Spence, E.A., Wunsch, J.: Wavenumber-explicit convergence of the \(hp\)-FEM for the full-space heterogeneous Helmholtz equation with smooth coefficients (2020). arXiv:​2010.​00585
17.
Zurück zum Zitat Melenk, J.M., Sauter, S.: Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49, 1210–1243 (2011)MathSciNetCrossRef Melenk, J.M., Sauter, S.: Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49, 1210–1243 (2011)MathSciNetCrossRef
18.
Zurück zum Zitat Melenk, J.M., Sauter, S.A.: Wavenumber-explicit \(hp\)-FEM analysis for Maxwell’s equations with transparent boundary conditions. Found. Comput. Math. 21, 125–241 (2021)MathSciNetCrossRef Melenk, J.M., Sauter, S.A.: Wavenumber-explicit \(hp\)-FEM analysis for Maxwell’s equations with transparent boundary conditions. Found. Comput. Math. 21, 125–241 (2021)MathSciNetCrossRef
19.
Zurück zum Zitat Sauter, S., Zech, J.: A posteriori error estimation of \(hp\)-dG finite element methods for highly indefinite Helmholtz problems. SIAM J. Numer. Anal. 53, 2414–2440 (2015)MathSciNetCrossRef Sauter, S., Zech, J.: A posteriori error estimation of \(hp\)-dG finite element methods for highly indefinite Helmholtz problems. SIAM J. Numer. Anal. 53, 2414–2440 (2015)MathSciNetCrossRef
20.
Zurück zum Zitat Schatz, A.H.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comput. 28, 959–962 (1974)MathSciNetCrossRef Schatz, A.H.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comput. 28, 959–962 (1974)MathSciNetCrossRef
21.
Zurück zum Zitat Taus, M., Zepeda-Núñez, L., Hewett, R., Demanet, L.: Pollution-free and fast hybridizable discontinuous Galerkin solvers for the high-frequency Helmholtz equation. In: Proc, SEG annual meeting (Houston) (2017) Taus, M., Zepeda-Núñez, L., Hewett, R., Demanet, L.: Pollution-free and fast hybridizable discontinuous Galerkin solvers for the high-frequency Helmholtz equation. In: Proc, SEG annual meeting (Houston) (2017)
22.
23.
24.
Zurück zum Zitat Zhong, L., Shu, S., Wittum, G., Xu, J.: Optimal error estimates for Nédélec edge elements for time-harmonic Maxwell’s equations. J. Comput. Math. 27, 563–572 (2009)MathSciNetCrossRef Zhong, L., Shu, S., Wittum, G., Xu, J.: Optimal error estimates for Nédélec edge elements for time-harmonic Maxwell’s equations. J. Comput. Math. 27, 563–572 (2009)MathSciNetCrossRef
Metadaten
Titel
Frequency-explicit approximability estimates for time-harmonic Maxwell’s equations
verfasst von
Théophile Chaumont-Frelet
Patrick Vega
Publikationsdatum
01.06.2022
Verlag
Springer International Publishing
Erschienen in
Calcolo / Ausgabe 2/2022
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-022-00464-7

Weitere Artikel der Ausgabe 2/2022

Calcolo 2/2022 Zur Ausgabe

Premium Partner