Skip to main content
Top
Published in: Journal of Electronic Materials 1/2024

03-11-2023 | Original Research Article

Composition-Driven Structural, Optical, Thermal and Electrochemical Properties of Hybrid Perovskite-Structured Methylammonium-Tin-Chloride

Authors: N. Gopinathan, S. Sathik Basha, N. Vasimalai, Noor Aman Ahrar Mundari, A. Shajahan, J. Shahitha Parveen, S. Syed Enayathali

Published in: Journal of Electronic Materials | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Compositional techniques are recognised as an efficient way to produce efficient and stable organic-inorganic halide perovskites (OIHPs). Several studies on OIHPs have criticized the instability and toxicity of lead, which have been largely overlooked due to the lack of large-scale commercial implementation. Tin-based OIHPs have been employed with three different perovskite systems to solve this problem. In this work, we report the synthesis and structural, optical, electrochemical and thermal properties of three different lead-free methylammonium tin chlorides, namely CH3NH3SnCl3, CH3NH3Sn2Cl5 and (CH3NH3)4SnCl6. The synthesised perovskites were characterised by x-ray diffraction (XRD) patterns, field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS), photoluminescence (PL), thermogravimetric analysis (TGA) and cyclic voltammetry (CV) measurements. The analysis confirms that they have cubic, tetragonal and trigonal crystal structures. FE-SEM images showed agglomeration shapes. The DRS UV–Vis studies revealed that all the synthesised perovskites exhibit semiconducting behavior. PL analysis confirmed the emission centre in the green part of the spectrum. The thermal kinetics, including activation energy, Arrhenius constant, entropy, enthalpy and Gibbs energy, were calculated using the first weight loss of the TGA spectrum. CV analysis was used to determine the maximum specific capacitance of the supercapacitors, and revealed that the CH3NH3Sn2Cl5 perovskite exhibited better performance than CH3NH3SnCl3 and (CH3NH3)4SnCl6 perovskites.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference T. Kim, S. Park, V. Iyer, B. Shaheen, U. Choudhry, Q. Jiang, G. Eichman, R. Gnabasik, K. Kelley, B. Lawrie, K. Zhu and B. Liao, Mapping the pathways of photo-induced ion migration in organic-inorganic hybrid halide perovskites. Nat. Commun. 14(1), 1846 (2023).CrossRef T. Kim, S. Park, V. Iyer, B. Shaheen, U. Choudhry, Q. Jiang, G. Eichman, R. Gnabasik, K. Kelley, B. Lawrie, K. Zhu and B. Liao, Mapping the pathways of photo-induced ion migration in organic-inorganic hybrid halide perovskites. Nat. Commun. 14(1), 1846 (2023).CrossRef
2.
go back to reference C. Hu, Z. Zhang, J. Chen and P. Gao, Surface passivation of organic-inorganic hybrid perovskites with methylhydrazine iodide for enhanced photovoltaic device performance. Inorganics 11(4), 168 (2023).CrossRef C. Hu, Z. Zhang, J. Chen and P. Gao, Surface passivation of organic-inorganic hybrid perovskites with methylhydrazine iodide for enhanced photovoltaic device performance. Inorganics 11(4), 168 (2023).CrossRef
3.
go back to reference S. Güz, M. Buldu-Akturk, H. Göçmez and E. Erdem, All-in-one electric double layer supercapacitors based on CH3NH3PbI3 perovskite electrodes. ACS Omega 7(50), 47306 (2022).CrossRef S. Güz, M. Buldu-Akturk, H. Göçmez and E. Erdem, All-in-one electric double layer supercapacitors based on CH3NH3PbI3 perovskite electrodes. ACS Omega 7(50), 47306 (2022).CrossRef
4.
go back to reference X. Meng, S. Ji, Q. Wang, X. Wang, T. Bai, R. Zhang, B. Yang, Y. Li, Z. Shao, J. Jiang, K. Han and F. Liu, Organic-inorganic hybrid cuprous-based metal halides for warm white light-emitting diodes. Adv. Sci. 9(31), 2203596 (2022).CrossRef X. Meng, S. Ji, Q. Wang, X. Wang, T. Bai, R. Zhang, B. Yang, Y. Li, Z. Shao, J. Jiang, K. Han and F. Liu, Organic-inorganic hybrid cuprous-based metal halides for warm white light-emitting diodes. Adv. Sci. 9(31), 2203596 (2022).CrossRef
5.
go back to reference G.H. Jaffari, M. Gul, A.M. Iqbal, W. Ali, W. Mahmood and A. Ali, Effect of temperature on structural phase transition and photoluminescence in organic-inorganic hybrid CH3NH3PbI3-Cl perovskite. Opt. Mater. 142, 114004 (2023).CrossRef G.H. Jaffari, M. Gul, A.M. Iqbal, W. Ali, W. Mahmood and A. Ali, Effect of temperature on structural phase transition and photoluminescence in organic-inorganic hybrid CH3NH3PbI3-Cl perovskite. Opt. Mater. 142, 114004 (2023).CrossRef
6.
go back to reference R. Nitsche, Crystal chemistry, growth and properties of multi-cation chalcogenides. J. Phys. Colloques 36, C3 (1975).CrossRef R. Nitsche, Crystal chemistry, growth and properties of multi-cation chalcogenides. J. Phys. Colloques 36, C3 (1975).CrossRef
7.
go back to reference T. Oku, S. Uchiya, R. Okumura, A. Suzuki, I. Ono, S. Fukunishi, T. Tachikawa and T. Hasegawa, Effects of co-addition of guanidinium and cesium to CH3NH3PbI3 perovskite solar cells. Inorganics 11(7), 273 (2023).CrossRef T. Oku, S. Uchiya, R. Okumura, A. Suzuki, I. Ono, S. Fukunishi, T. Tachikawa and T. Hasegawa, Effects of co-addition of guanidinium and cesium to CH3NH3PbI3 perovskite solar cells. Inorganics 11(7), 273 (2023).CrossRef
8.
go back to reference A. Bonadio, F.P. Sabino, A.L.M. Freitas, M.R. Felez, G.M. Dalpian and J.A. Souza, Comparing the cubic and tetragonal phases of MAPbI3 at room temperature. Inorg. Chem. 62(19), 7533 (2023).CrossRef A. Bonadio, F.P. Sabino, A.L.M. Freitas, M.R. Felez, G.M. Dalpian and J.A. Souza, Comparing the cubic and tetragonal phases of MAPbI3 at room temperature. Inorg. Chem. 62(19), 7533 (2023).CrossRef
9.
go back to reference S.M. Jassim, Fabrication and characterization of an inorganic lead-free double perovskite solar cell. J. Electron. Mater. 51(6), 2828 (2022).CrossRef S.M. Jassim, Fabrication and characterization of an inorganic lead-free double perovskite solar cell. J. Electron. Mater. 51(6), 2828 (2022).CrossRef
10.
go back to reference E. Keles Guner, Structural, optical, magnetic and photocatalytic properties of Zn doped CoFe2O4 decorated bentonite nanocomposites. ChemistrySelect 8, 10, e202204568, (2023) E. Keles Guner, Structural, optical, magnetic and photocatalytic properties of Zn doped CoFe2O4 decorated bentonite nanocomposites. ChemistrySelect 8, 10, e202204568, (2023)
11.
go back to reference Y. Kim, P. Nandi, D. Lee and H. Shin, Stabilization of 3-D trigonal phase in guanidinium (C(NH2)3) lead triiodide (GAPbI3) films. Appl. Surf. Sci. 542, 148575 (2021).CrossRef Y. Kim, P. Nandi, D. Lee and H. Shin, Stabilization of 3-D trigonal phase in guanidinium (C(NH2)3) lead triiodide (GAPbI3) films. Appl. Surf. Sci. 542, 148575 (2021).CrossRef
12.
go back to reference Y. Liu, J.K. Cockcroft, Z. Chen, M.A. Hayward, P.F. Henry, R.S. Perry and R.G. Palgrave, Phase transitions and optical properties of the trigonal perovskite (CH3NH3)2TeCl6. J. Mater. Chem. C 10(33), 11938 (2022).CrossRef Y. Liu, J.K. Cockcroft, Z. Chen, M.A. Hayward, P.F. Henry, R.S. Perry and R.G. Palgrave, Phase transitions and optical properties of the trigonal perovskite (CH3NH3)2TeCl6. J. Mater. Chem. C 10(33), 11938 (2022).CrossRef
13.
go back to reference G. Mannino, I. Deretzis, E. Smecca, A. La Magna, A. Alberti, D. Ceratti and D. Cahen, Temperature-dependent optical band gap in CsPbBr3, MAPbBr3, and FAPbBr3 single crystals. J. Phys. Chem. Lett. 11(7), 2490 (2020).CrossRef G. Mannino, I. Deretzis, E. Smecca, A. La Magna, A. Alberti, D. Ceratti and D. Cahen, Temperature-dependent optical band gap in CsPbBr3, MAPbBr3, and FAPbBr3 single crystals. J. Phys. Chem. Lett. 11(7), 2490 (2020).CrossRef
14.
go back to reference L. Atourki, E. Vega, B. Marí, M. Mollar, H. Ait Ahsaine, K. Bouabid and A. Ihlal, Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI3−xBrx (0 ≤ x ≤ 1) films. Appl. Surf. Sci. 371, 112 (2016) L. Atourki, E. Vega, B. Marí, M. Mollar, H. Ait Ahsaine, K. Bouabid and A. Ihlal, Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI3−xBrx (0 ≤ x ≤ 1) films. Appl. Surf. Sci. 371, 112 (2016)
15.
go back to reference A.L. Wani, A. Ara and J.A. Usmani, Lead toxicity: a review. Interdiscip. Toxicol. 8(2), 55 (2015).CrossRef A.L. Wani, A. Ara and J.A. Usmani, Lead toxicity: a review. Interdiscip. Toxicol. 8(2), 55 (2015).CrossRef
16.
go back to reference A.E. Charkiewicz and J.R. Backstrand, Lead toxicity and pollution in Poland. IJERPH 17(12), 4385 (2020).CrossRef A.E. Charkiewicz and J.R. Backstrand, Lead toxicity and pollution in Poland. IJERPH 17(12), 4385 (2020).CrossRef
17.
go back to reference A. Kumar, A. Kumar, C.-P. M.M.S., A. K. Chaturvedi, A. A. Shabnam, G. Subrahmanyam, R. Mondal, D. K. Gupta, S. K. Malyan, S. S. Kumar, S. A. Khan, and K. K. Yadav, Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. IJERPH 17(7), 2179 (2020) A. Kumar, A. Kumar, C.-P. M.M.S., A. K. Chaturvedi, A. A. Shabnam, G. Subrahmanyam, R. Mondal, D. K. Gupta, S. K. Malyan, S. S. Kumar, S. A. Khan, and K. K. Yadav, Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. IJERPH 17(7), 2179 (2020)
18.
go back to reference M. Słota, M. Wąsik, T. Stołtny, A. Machoń-Grecka, and S. Kasperczyk, Effects of environmental and occupational lead toxicity and its association with iron metabolism. Toxicol. Appl. Pharmacol. 434, 115794 (2022).CrossRef M. Słota, M. Wąsik, T. Stołtny, A. Machoń-Grecka, and S. Kasperczyk, Effects of environmental and occupational lead toxicity and its association with iron metabolism. Toxicol. Appl. Pharmacol. 434, 115794 (2022).CrossRef
19.
go back to reference N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, and H.J. Snaith, Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061 (2014).CrossRef N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, and H.J. Snaith, Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061 (2014).CrossRef
20.
go back to reference X. Qiu, B. Cao, S. Yuan, X. Chen, Z. Qiu, Y. Jiang, Q. Ye, H. Wang, H. Zeng, J. Liu, and M. G. Kanatzidis, From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Solar Energy Mater Solar Cells 159, 227 (2017) X. Qiu, B. Cao, S. Yuan, X. Chen, Z. Qiu, Y. Jiang, Q. Ye, H. Wang, H. Zeng, J. Liu, and M. G. Kanatzidis, From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Solar Energy Mater Solar Cells 159, 227 (2017)
21.
go back to reference T.C. Jellicoe, J.M. Richter, H.F.J. Glass, M. Tabachnyk, R. Brady, S.E. Dutton, A. Rao, R.H. Friend, D. Credgington, N.C. Greenham, and M.L. Böhm, Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 138(9), 2941 (2016).CrossRef T.C. Jellicoe, J.M. Richter, H.F.J. Glass, M. Tabachnyk, R. Brady, S.E. Dutton, A. Rao, R.H. Friend, D. Credgington, N.C. Greenham, and M.L. Böhm, Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 138(9), 2941 (2016).CrossRef
22.
go back to reference J. Feng and B. Xiao, Effective masses and electronic and optical properties of nontoxic MASnX3 (X = Cl, Br, and I) perovskite structures as solar cell absorber: a theoretical study using HSE06. J. Phys. Chem. C 118(34), 19655 (2014).CrossRef J. Feng and B. Xiao, Effective masses and electronic and optical properties of nontoxic MASnX3 (X = Cl, Br, and I) perovskite structures as solar cell absorber: a theoretical study using HSE06. J. Phys. Chem. C 118(34), 19655 (2014).CrossRef
23.
go back to reference F. Hao, C.C. Stoumpos, P. Guo, N. Zhou, T.J. Marks, R.P.H. Chang and M.G. Kanatzidis, Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 137(35), 11445 (2015).CrossRef F. Hao, C.C. Stoumpos, P. Guo, N. Zhou, T.J. Marks, R.P.H. Chang and M.G. Kanatzidis, Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 137(35), 11445 (2015).CrossRef
24.
go back to reference L. Peedikakkandy and P. Bhargava, Recrystallization and phase stability study of cesium tin iodide for application as a hole transporter in dye sensitized solar cells. Mater. Sci. Semicond. Process. 33, 103 (2015).CrossRef L. Peedikakkandy and P. Bhargava, Recrystallization and phase stability study of cesium tin iodide for application as a hole transporter in dye sensitized solar cells. Mater. Sci. Semicond. Process. 33, 103 (2015).CrossRef
25.
go back to reference R. Mosca, P. Ferro, T. Besagni, D. Calestani, F. Chiarella, and F. Licci, Effect of humidity on the a.c. impedance of CH3NH3SnCl3 hybrid films. Appl. Phys. A 104(4), 1181 (2011) R. Mosca, P. Ferro, T. Besagni, D. Calestani, F. Chiarella, and F. Licci, Effect of humidity on the a.c. impedance of CH3NH3SnCl3 hybrid films. Appl. Phys. A 104(4), 1181 (2011)
26.
go back to reference C.-M. Tsai, N. Mohanta, C.-Y. Wang, Y.-P. Lin, Y.-W. Yang, C.-L. Wang, C.-H. Hung, and E.W.-G. Diau, Formation of stable tin perovskites co-crystallized with three halides for carbon-based mesoscopic lead-free perovskite solar cells. Angew. Chem. 129(44), 14007 (2017).CrossRef C.-M. Tsai, N. Mohanta, C.-Y. Wang, Y.-P. Lin, Y.-W. Yang, C.-L. Wang, C.-H. Hung, and E.W.-G. Diau, Formation of stable tin perovskites co-crystallized with three halides for carbon-based mesoscopic lead-free perovskite solar cells. Angew. Chem. 129(44), 14007 (2017).CrossRef
27.
go back to reference Rahul, P. K. Singh, R. Singh, V. Singh, B. Bhattacharya, and Z. H. Khan, New class of lead free perovskite material for low-cost solar cell application. Mater. Res. Bull. 97, 572 (2018) Rahul, P. K. Singh, R. Singh, V. Singh, B. Bhattacharya, and Z. H. Khan, New class of lead free perovskite material for low-cost solar cell application. Mater. Res. Bull. 97, 572 (2018)
28.
go back to reference L. Wang, K. Wang, G. Xiao, Q. Zeng, and B. Zou, Pressure-Induced Structural evolution and band gap shifts of organometal halide perovskite-based methylammonium lead chloride. J. Phys. Chem. Lett. 7(24), 5273 (2016).CrossRef L. Wang, K. Wang, G. Xiao, Q. Zeng, and B. Zou, Pressure-Induced Structural evolution and band gap shifts of organometal halide perovskite-based methylammonium lead chloride. J. Phys. Chem. Lett. 7(24), 5273 (2016).CrossRef
29.
go back to reference Rahul, P. K. Singh, M. Parvaz, S. Ahmed, R. K. Sonker, B. Bhattacharya, and Z. H. Khan, Less toxic tin incorporated perovskite solar cell using polymer electrolyte processed in the air. Optik 169, 166 (2018) Rahul, P. K. Singh, M. Parvaz, S. Ahmed, R. K. Sonker, B. Bhattacharya, and Z. H. Khan, Less toxic tin incorporated perovskite solar cell using polymer electrolyte processed in the air. Optik 169, 166 (2018)
30.
go back to reference S.A. Moyez, and S. Roy, Thermal engineering of lead-free nanostructured CH3NH3SnCl3 perovskite material for thin-film solar cell. J. Nanopart. Res. 20(1), 5 (2018).CrossRef S.A. Moyez, and S. Roy, Thermal engineering of lead-free nanostructured CH3NH3SnCl3 perovskite material for thin-film solar cell. J. Nanopart. Res. 20(1), 5 (2018).CrossRef
31.
go back to reference F. Chiarella, A. Zappettini, F. Licci, I. Borriello, G. Cantele, D. Ninno, A. Cassinese, and R. Vaglio, Combined experimental and theoretical investigation of optical, structural, and electronic properties of CH3NH3 SnX3 thin films ( X = Cl, Br ). Phys. Rev. B 77(4), 045129 (2008).CrossRef F. Chiarella, A. Zappettini, F. Licci, I. Borriello, G. Cantele, D. Ninno, A. Cassinese, and R. Vaglio, Combined experimental and theoretical investigation of optical, structural, and electronic properties of CH3NH3 SnX3 thin films ( X = Cl, Br ). Phys. Rev. B 77(4), 045129 (2008).CrossRef
32.
go back to reference S. R. Kumavat, Y. Sonvane, and S. K. Gupta, Structural, optical, transport, and solar cell properties of 2D halide perovskite MAZX3 (Z = Pb, Sn, and X = Cl, Br, I). J Appl Phys (n.d.) S. R. Kumavat, Y. Sonvane, and S. K. Gupta, Structural, optical, transport, and solar cell properties of 2D halide perovskite MAZX3 (Z = Pb, Sn, and X = Cl, Br, I). J Appl Phys (n.d.)
33.
go back to reference K.-H. Wang, L. Wu, L. Li, H.-B. Yao, H.-S. Qian, and S.-H. Yu, Large-scale synthesis of highly luminescent perovskite-related CsPb2 Br5 nanoplatelets and their fast anion exchange. Angew. Chem. Int. Ed. 55(29), 8328 (2016).CrossRef K.-H. Wang, L. Wu, L. Li, H.-B. Yao, H.-S. Qian, and S.-H. Yu, Large-scale synthesis of highly luminescent perovskite-related CsPb2 Br5 nanoplatelets and their fast anion exchange. Angew. Chem. Int. Ed. 55(29), 8328 (2016).CrossRef
34.
go back to reference M. De Bastiani, I. Dursun, Y. Zhang, B.A. Alshankiti, X.-H. Miao, J. Yin, E. Yengel, E. Alarousu, B. Turedi, J.M. Almutlaq, M.I. Saidaminov, S. Mitra, I. Gereige, A. AlSaggaf, Y. Zhu, Y. Han, I.S. Roqan, J.-L. Bredas, O.F. Mohammed, and O.M. Bakr, Inside perovskites: quantum luminescence from bulk Cs4 PbBr6 single crystals. Chem. Mater. 29(17), 7108 (2017).CrossRef M. De Bastiani, I. Dursun, Y. Zhang, B.A. Alshankiti, X.-H. Miao, J. Yin, E. Yengel, E. Alarousu, B. Turedi, J.M. Almutlaq, M.I. Saidaminov, S. Mitra, I. Gereige, A. AlSaggaf, Y. Zhu, Y. Han, I.S. Roqan, J.-L. Bredas, O.F. Mohammed, and O.M. Bakr, Inside perovskites: quantum luminescence from bulk Cs4 PbBr6 single crystals. Chem. Mater. 29(17), 7108 (2017).CrossRef
35.
go back to reference G. Nallamuthu, S. Thangavel, K. Kirubakaran, V. Vasudevan, Y. Sivalingam, and G. Venugopal, Study of structural and electrochemical properties of La2SrV2O9 perovskites prepared using ball-milling. Appl. Surf. Sci. 449, 468 (2018).CrossRef G. Nallamuthu, S. Thangavel, K. Kirubakaran, V. Vasudevan, Y. Sivalingam, and G. Venugopal, Study of structural and electrochemical properties of La2SrV2O9 perovskites prepared using ball-milling. Appl. Surf. Sci. 449, 468 (2018).CrossRef
36.
go back to reference M. Adnan and J.K. Lee, All sequential dip-coating processed perovskite layers from an aqueous lead precursor for high efficiency perovskite solar cells. Sci. Rep. 8(1), 2168 (2018).CrossRef M. Adnan and J.K. Lee, All sequential dip-coating processed perovskite layers from an aqueous lead precursor for high efficiency perovskite solar cells. Sci. Rep. 8(1), 2168 (2018).CrossRef
37.
go back to reference Z. Arain, C. Liu, Y. Yang, M. Mateen, Y. Ren, Y. Ding, X. Liu, Z. Ali, M. Kumar, and S. Dai, Elucidating the dynamics of solvent engineering for perovskite solar cells. Sci. China Mater. 62(2), 161 (2019).CrossRef Z. Arain, C. Liu, Y. Yang, M. Mateen, Y. Ren, Y. Ding, X. Liu, Z. Ali, M. Kumar, and S. Dai, Elucidating the dynamics of solvent engineering for perovskite solar cells. Sci. China Mater. 62(2), 161 (2019).CrossRef
38.
go back to reference G. Y. Soracá-Pérez, D. K. Gómez-Reyes, J. A. Gómez-Cuaspud, E. Vera-López and Y. Pineda-triana, Synthesis and characterization of a hybrid perovskite to be applied as an absorbent layer in solar cell. J. Phys. Conf. Ser. 1386, 012068 (2019) G. Y. Soracá-Pérez, D. K. Gómez-Reyes, J. A. Gómez-Cuaspud, E. Vera-López and Y. Pineda-triana, Synthesis and characterization of a hybrid perovskite to be applied as an absorbent layer in solar cell. J. Phys. Conf. Ser. 1386, 012068 (2019)
39.
go back to reference N. Gopinathan, S.S. Basha, I.B.S. Banu, M.H. Mamat, and M.M.S. Sirajudeen, Solvents driven structural, morphological, optical and dielectric properties of lead free perovskite CH3 NH3 SnCl3 for optoelectronic applications: experimental and DFT study. Mater. Res. Express 6(12), 125921 (2020).CrossRef N. Gopinathan, S.S. Basha, I.B.S. Banu, M.H. Mamat, and M.M.S. Sirajudeen, Solvents driven structural, morphological, optical and dielectric properties of lead free perovskite CH3 NH3 SnCl3 for optoelectronic applications: experimental and DFT study. Mater. Res. Express 6(12), 125921 (2020).CrossRef
40.
go back to reference P. Acharyya, P. Pal, P.K. Samanta, A. Sarkar, S.K. Pati, and K. Biswas, Single pot synthesis of indirect band gap 2D CsPb2Br5 nanosheets from direct band gap 3D CsPbBr3 nanocrystals and the origin of their luminescence properties. Nanoscale 11(9), 4001 (2019).CrossRef P. Acharyya, P. Pal, P.K. Samanta, A. Sarkar, S.K. Pati, and K. Biswas, Single pot synthesis of indirect band gap 2D CsPb2Br5 nanosheets from direct band gap 3D CsPbBr3 nanocrystals and the origin of their luminescence properties. Nanoscale 11(9), 4001 (2019).CrossRef
41.
go back to reference X. Zhang, B. Xu, J. Zhang, Y. Gao, Y. Zheng, K. Wang, and X.W. Sun, All-Inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3-CsPb2 Br5 composites. Adv. Funct. Mater. 26(25), 4595 (2016).CrossRef X. Zhang, B. Xu, J. Zhang, Y. Gao, Y. Zheng, K. Wang, and X.W. Sun, All-Inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3-CsPb2 Br5 composites. Adv. Funct. Mater. 26(25), 4595 (2016).CrossRef
42.
go back to reference I. Dursun, M. De Bastiani, B. Turedi, B. Alamer, A. Shkurenko, J. Yin, A.M. El-Zohry, I. Gereige, A. AlSaggaf, O.F. Mohammed, M. Eddaoudi, and O.M. Bakr, CsPb2Br5 single crystals: synthesis and characterization. Chemsuschem 10(19), 3746 (2017).CrossRef I. Dursun, M. De Bastiani, B. Turedi, B. Alamer, A. Shkurenko, J. Yin, A.M. El-Zohry, I. Gereige, A. AlSaggaf, O.F. Mohammed, M. Eddaoudi, and O.M. Bakr, CsPb2Br5 single crystals: synthesis and characterization. Chemsuschem 10(19), 3746 (2017).CrossRef
43.
go back to reference S. Tang, Y. Deng, X. Zheng, Y. Bai, Y. Fang, Q. Dong, H. Wei, and J. Huang, Composition engineering in doctor-blading of perovskite solar cells. Adv. Energy Mater. 7(18), 1700302 (2017).CrossRef S. Tang, Y. Deng, X. Zheng, Y. Bai, Y. Fang, Q. Dong, H. Wei, and J. Huang, Composition engineering in doctor-blading of perovskite solar cells. Adv. Energy Mater. 7(18), 1700302 (2017).CrossRef
44.
go back to reference W. Li, M.U. Rothmann, Y. Zhu, W. Chen, C. Yang, Y. Yuan, Y.Y. Choo, X. Wen, Y.-B. Cheng, U. Bach, and J. Etheridge, The critical role of composition-dependent intragrain planar defects in the performance of MA1–xFAxPbI3 perovskite solar cells. Nat. Energy 6(6), 624 (2021).CrossRef W. Li, M.U. Rothmann, Y. Zhu, W. Chen, C. Yang, Y. Yuan, Y.Y. Choo, X. Wen, Y.-B. Cheng, U. Bach, and J. Etheridge, The critical role of composition-dependent intragrain planar defects in the performance of MA1–xFAxPbI3 perovskite solar cells. Nat. Energy 6(6), 624 (2021).CrossRef
45.
go back to reference J.-H. Cha, J.H. Han, W. Yin, C. Park, Y. Park, T.K. Ahn, J.H. Cho, and D.-Y. Jung, Photoresponse of CsPbBr3 and Cs4 PbBr6 perovskite single crystals. J. Phys. Chem. Lett. 8(3), 565 (2017).CrossRef J.-H. Cha, J.H. Han, W. Yin, C. Park, Y. Park, T.K. Ahn, J.H. Cho, and D.-Y. Jung, Photoresponse of CsPbBr3 and Cs4 PbBr6 perovskite single crystals. J. Phys. Chem. Lett. 8(3), 565 (2017).CrossRef
46.
go back to reference Q.V. Le, J.W. Lee, W. Sohn, H.W. Jang, J.K. Kim, and S.Y. Kim, Low Temperature solution-processable cesium lead bromide microcrystals for light conversion. Cryst. Growth Des. 18(5), 3161 (2018).CrossRef Q.V. Le, J.W. Lee, W. Sohn, H.W. Jang, J.K. Kim, and S.Y. Kim, Low Temperature solution-processable cesium lead bromide microcrystals for light conversion. Cryst. Growth Des. 18(5), 3161 (2018).CrossRef
47.
go back to reference G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22 (1953).CrossRef G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22 (1953).CrossRef
48.
go back to reference P. Sarkar, A. Srivastava, S.K. Tripathy, K.L. Baishnab, T.R. Lenka, P.S. Menon, F. Lin, and A.G. Aberle, Exploring the effect of Ga3+ doping on structural, electronic and optical properties of CH3NH3PbCl3 perovskites: an experimental study. J. Mater. Sci. Mater. Electron. 32(10), 12841 (2021).CrossRef P. Sarkar, A. Srivastava, S.K. Tripathy, K.L. Baishnab, T.R. Lenka, P.S. Menon, F. Lin, and A.G. Aberle, Exploring the effect of Ga3+ doping on structural, electronic and optical properties of CH3NH3PbCl3 perovskites: an experimental study. J. Mater. Sci. Mater. Electron. 32(10), 12841 (2021).CrossRef
49.
go back to reference J.-F. Wang, L. Zhu, B.-G. Zhao, Y.-L. Zhao, J. Song, X.-Q. Gu, and Y.-H. Qiang, Surface engineering of perovskite films for efficient solar cells. Sci. Rep. 7(1), 14478 (2017).CrossRef J.-F. Wang, L. Zhu, B.-G. Zhao, Y.-L. Zhao, J. Song, X.-Q. Gu, and Y.-H. Qiang, Surface engineering of perovskite films for efficient solar cells. Sci. Rep. 7(1), 14478 (2017).CrossRef
50.
go back to reference P. Sarkar, A. Srivastava, S.K. Tripathy, K.L. Baishnab, T.R. Lenka, P.S. Menon, F. Lin, and A.G. Aberle, Impact of Sn doping on methylammonium lead chloride perovskite: an experimental study. J. Appl. Phys. 127(12), 125110 (2020).CrossRef P. Sarkar, A. Srivastava, S.K. Tripathy, K.L. Baishnab, T.R. Lenka, P.S. Menon, F. Lin, and A.G. Aberle, Impact of Sn doping on methylammonium lead chloride perovskite: an experimental study. J. Appl. Phys. 127(12), 125110 (2020).CrossRef
51.
go back to reference P. Sarkar, J. Mazumder, S.K. Tripathy, K.L. Baishnab, and G. Palai, Structural, optoelectronic, and morphological study of indium-doped methylammonium lead chloride perovskites. Appl. Phys. A 125(8), 580 (2019).CrossRef P. Sarkar, J. Mazumder, S.K. Tripathy, K.L. Baishnab, and G. Palai, Structural, optoelectronic, and morphological study of indium-doped methylammonium lead chloride perovskites. Appl. Phys. A 125(8), 580 (2019).CrossRef
52.
go back to reference S.K. Abdel-Aal, M.F. Kandeel, A.F. El-Sherif, and A.S. Abdel-Rahman, Synthesis, characterization, and optical properties of new organic-inorganic hybrid perovskites [(NH3)2(CH2)3]CuCl4 and [(NH3)2(CH2)4 ]CuCl2 Br2. Phys. Status Solidi (a) 218(12), 2100036 (2021).CrossRef S.K. Abdel-Aal, M.F. Kandeel, A.F. El-Sherif, and A.S. Abdel-Rahman, Synthesis, characterization, and optical properties of new organic-inorganic hybrid perovskites [(NH3)2(CH2)3]CuCl4 and [(NH3)2(CH2)4 ]CuCl2 Br2. Phys. Status Solidi (a) 218(12), 2100036 (2021).CrossRef
53.
go back to reference M. Patel, A. Chavda, I. Mukhopadhyay, J. Kim, and A. Ray, Nanostructured SnS with inherent anisotropic optical properties for high photoactivity. Nanoscale 8(4), 2293 (2016).CrossRef M. Patel, A. Chavda, I. Mukhopadhyay, J. Kim, and A. Ray, Nanostructured SnS with inherent anisotropic optical properties for high photoactivity. Nanoscale 8(4), 2293 (2016).CrossRef
54.
go back to reference A.S. Bhatt, R. Ranjitha, M.S. Santosh, C.R. Ravikumar, S.C. Prashantha, R.R. Maphanga, and G.F.B.L.E. Silva, Optical and electrochemical applications of li-doped NiO nanostructures synthesized via facile microwave technique. Materials 13(13), 2961 (2020).CrossRef A.S. Bhatt, R. Ranjitha, M.S. Santosh, C.R. Ravikumar, S.C. Prashantha, R.R. Maphanga, and G.F.B.L.E. Silva, Optical and electrochemical applications of li-doped NiO nanostructures synthesized via facile microwave technique. Materials 13(13), 2961 (2020).CrossRef
55.
go back to reference D. K. Takci, E. Senadim Tuzemen, K. Kara, S. Yilmaz, R. Esen, and O. Baglayan, Influence of Al concentration on structural and optical properties of Al-doped ZnO thin films. J. Mater. Sci. Mater. Electron. 25(5), 2078 (2014) D. K. Takci, E. Senadim Tuzemen, K. Kara, S. Yilmaz, R. Esen, and O. Baglayan, Influence of Al concentration on structural and optical properties of Al-doped ZnO thin films. J. Mater. Sci. Mater. Electron. 25(5), 2078 (2014)
56.
go back to reference P. Norouzzadeh, Kh. Mabhouti, M.M. Golzan, and R. Naderali, Investigation of structural, morphological and optical characteristics of Mn substituted Al-doped ZnO NPs: a Urbach energy and Kramers-Kronig study. Optik 204(164227), 57 (2020). P. Norouzzadeh, Kh. Mabhouti, M.M. Golzan, and R. Naderali, Investigation of structural, morphological and optical characteristics of Mn substituted Al-doped ZnO NPs: a Urbach energy and Kramers-Kronig study. Optik 204(164227), 57 (2020).
57.
go back to reference Q.A. Akkerman, S. Park, E. Radicchi, F. Nunzi, E. Mosconi, F. De Angelis, R. Brescia, P. Rastogi, M. Prato, and L. Manna, Nearly Monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett. 17(3), 1924 (2017).CrossRef Q.A. Akkerman, S. Park, E. Radicchi, F. Nunzi, E. Mosconi, F. De Angelis, R. Brescia, P. Rastogi, M. Prato, and L. Manna, Nearly Monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett. 17(3), 1924 (2017).CrossRef
58.
go back to reference Z. Wu, J. Yang, X. Sun, Y. Wu, L. Wang, G. Meng, D. Kuang, X. Guo, W. Qu, B. Du, C. Liang, X. Fang, X. Tang, and Y. He, An excellent impedance-type humidity sensor based on halide perovskite CsPbBr 3 nanoparticles for human respiration monitoring. Sens. Actuators, B Chem. 337, 129772 (2021).CrossRef Z. Wu, J. Yang, X. Sun, Y. Wu, L. Wang, G. Meng, D. Kuang, X. Guo, W. Qu, B. Du, C. Liang, X. Fang, X. Tang, and Y. He, An excellent impedance-type humidity sensor based on halide perovskite CsPbBr 3 nanoparticles for human respiration monitoring. Sens. Actuators, B Chem. 337, 129772 (2021).CrossRef
59.
go back to reference S. Vadivel, A. N. Naveen, J. Theerthagiri, J. Madhavan, T. Santhoshini Priya, and N. Balasubramanian, Solvothermal synthesis of BiPO4 nanorods/MWCNT (1D-1D) composite for photocatalyst and supercapacitor applications. Ceram. Int. 42(12), 14196 (2016) S. Vadivel, A. N. Naveen, J. Theerthagiri, J. Madhavan, T. Santhoshini Priya, and N. Balasubramanian, Solvothermal synthesis of BiPO4 nanorods/MWCNT (1D-1D) composite for photocatalyst and supercapacitor applications. Ceram. Int. 42(12), 14196 (2016)
60.
go back to reference A.N. Naveen and S. Selladurai, A 1-D/2-D hybrid nanostructured manganese cobaltite–graphene nanocomposite for electrochemical energy storage. RSC Adv. 5(80), 65139 (2015).CrossRef A.N. Naveen and S. Selladurai, A 1-D/2-D hybrid nanostructured manganese cobaltite–graphene nanocomposite for electrochemical energy storage. RSC Adv. 5(80), 65139 (2015).CrossRef
61.
go back to reference N. Arjun, G.-T. Pan and T.C.K. Yang, The exploration of Lanthanum based perovskites and their complementary electrolytes for the supercapacitor applications. Res Phys 7, 920 (2017). N. Arjun, G.-T. Pan and T.C.K. Yang, The exploration of Lanthanum based perovskites and their complementary electrolytes for the supercapacitor applications. Res Phys 7, 920 (2017).
62.
go back to reference K. Gayathri, P. Krishnan, N. Sivakumar, V. Sangeetha and G. Anbalagan, Growth, optical, thermal, mechanical and dielectric characterization of brucinium hydrogen maleate. J. Cryst. Growth 380, 111 (2013).CrossRef K. Gayathri, P. Krishnan, N. Sivakumar, V. Sangeetha and G. Anbalagan, Growth, optical, thermal, mechanical and dielectric characterization of brucinium hydrogen maleate. J. Cryst. Growth 380, 111 (2013).CrossRef
63.
go back to reference V. Sangeetha, K. Gayathri, P. Krishnan, N. Sivakumar, N. Kanagathara and G. Anbalagan, Growth, structural, crystallisation, thermal decomposition and dielectric behaviour of melaminium bis(hydrogen oxalate) single crystal. J. Therm. Anal. Calorim. 117(1), 307 (2014).CrossRef V. Sangeetha, K. Gayathri, P. Krishnan, N. Sivakumar, N. Kanagathara and G. Anbalagan, Growth, structural, crystallisation, thermal decomposition and dielectric behaviour of melaminium bis(hydrogen oxalate) single crystal. J. Therm. Anal. Calorim. 117(1), 307 (2014).CrossRef
64.
go back to reference W. Brostow and H. E. H. Lobland, in Materials: Introduction and Applications (John Wiley & Sons, 2016) W. Brostow and H. E. H. Lobland, in Materials: Introduction and Applications (John Wiley & Sons, 2016)
Metadata
Title
Composition-Driven Structural, Optical, Thermal and Electrochemical Properties of Hybrid Perovskite-Structured Methylammonium-Tin-Chloride
Authors
N. Gopinathan
S. Sathik Basha
N. Vasimalai
Noor Aman Ahrar Mundari
A. Shajahan
J. Shahitha Parveen
S. Syed Enayathali
Publication date
03-11-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 1/2024
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10777-0

Other articles of this Issue 1/2024

Journal of Electronic Materials 1/2024 Go to the issue