Skip to main content
Top
Published in: Wireless Personal Communications 4/2022

19-02-2022

Compressed Image Restoration by Combining Trained Dictionary with Plug and Play Framework

Authors: M. S. Sujithra, N. Sugitha

Published in: Wireless Personal Communications | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The JPEG compression is one of the traditional approach to produces compression at higher compression rates, despite the decompression still yields blocking artifacts. The proposed method aims to reduce blocking artifacts by combining the trained dictionary and Plug and Play (PnP) framework. The trained dictionary are derived from set of images, which incorporates the high frequency components. The PnP framework is based on image inverse problem, and this framework finds the optimized solution using Alternating Direction based method and leading denoisers. The main advantage of this framework is that it can incorporates any denoiser into it. In this paper, two denoisers considered for PnP framework are Recursive Filter and Total Variation. The main advantage of the proposed method is that it combines the two optimization strategies of image inverse problem. The trained dictionary finds the optimized solution based on the greedy approach and the PnP frame finds the optimized solution based on the constrained optimization. Specifically, the results are compared with leading techniques and sparsified DCT dictionary with PnP framework. The proposed method effectively restore the medical images that were compressed using JPEG format.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lee, J. S. (1983). Digital image smoothing and the sigma filter. Computer Vision and Graph in Image Processing, 24, 255–269.CrossRef Lee, J. S. (1983). Digital image smoothing and the sigma filter. Computer Vision and Graph in Image Processing, 24, 255–269.CrossRef
2.
go back to reference Banham, M. R., & Katsaggelos, A. K. (1997). Digital image restoration. IEEE Transaction on Signal Processing, 14(2), 24–41.CrossRef Banham, M. R., & Katsaggelos, A. K. (1997). Digital image restoration. IEEE Transaction on Signal Processing, 14(2), 24–41.CrossRef
3.
go back to reference George, A. T., Tzovaras, D., & Gerassimos, M. (2002). Blocking Artifacts detection and reduction in Compressed data. IEEE Transactions on Circuits and Systems for Video Technology, 12(10), 877–890.CrossRef George, A. T., Tzovaras, D., & Gerassimos, M. (2002). Blocking Artifacts detection and reduction in Compressed data. IEEE Transactions on Circuits and Systems for Video Technology, 12(10), 877–890.CrossRef
4.
go back to reference Hsu, Y. F., & Chen, Y. C. (1993). A new adaptive median filter for removing blocking effects. IEEE Transactions Consumer Electronics, 39(3), 510–513.CrossRef Hsu, Y. F., & Chen, Y. C. (1993). A new adaptive median filter for removing blocking effects. IEEE Transactions Consumer Electronics, 39(3), 510–513.CrossRef
5.
go back to reference Reeve, H. C., & Lim, J. S. (1984). Reduction of blocking artifacts in image coding. Optical Engineering, 23(1), 34–37. Reeve, H. C., & Lim, J. S. (1984). Reduction of blocking artifacts in image coding. Optical Engineering, 23(1), 34–37.
6.
go back to reference Jarske, T., Haavisto, P., & Defee, I. (1994). Post-filtering methods for reducing blocking effects from coded images. IEEE Transactions Consumer Electronics, 40(3), 521–526.CrossRef Jarske, T., Haavisto, P., & Defee, I. (1994). Post-filtering methods for reducing blocking effects from coded images. IEEE Transactions Consumer Electronics, 40(3), 521–526.CrossRef
7.
go back to reference Kuo, C. J., & Hseih, R. J. (1995). Adaptive post processor for block encoded images. IEEE Transactions on Circuits and Systems for Video Technology, 5(4), 298–304.CrossRef Kuo, C. J., & Hseih, R. J. (1995). Adaptive post processor for block encoded images. IEEE Transactions on Circuits and Systems for Video Technology, 5(4), 298–304.CrossRef
8.
go back to reference Meier,T., Ngan, K. N., &Crebbin,G. (1996). A region based algorithm for enhancement of images degraded by blocking effects. Proceedings of the IEEE TENCON Digital Signal Processing Applications, Australia. pp.405–408. Meier,T., Ngan, K. N., &Crebbin,G. (1996). A region based algorithm for enhancement of images degraded by blocking effects. Proceedings of the IEEE TENCON Digital Signal Processing Applications, Australia. pp.405–408.
9.
go back to reference Lee, Y. L., Kim, H. C., & Park, H. W. (1998). Blocking effect reduction by JPEG images by signal adaptive filtering. IEEE Transactions on Image Processing., 7(2), 229–234.CrossRef Lee, Y. L., Kim, H. C., & Park, H. W. (1998). Blocking effect reduction by JPEG images by signal adaptive filtering. IEEE Transactions on Image Processing., 7(2), 229–234.CrossRef
10.
go back to reference Zhang, B., & Allebach, J. P. (2008). Adaptive bilateral filter for sharpness enhancement and noise removal. IEEE Transactions on Image Processing, 17(17), 664–678.MathSciNetCrossRef Zhang, B., & Allebach, J. P. (2008). Adaptive bilateral filter for sharpness enhancement and noise removal. IEEE Transactions on Image Processing, 17(17), 664–678.MathSciNetCrossRef
11.
go back to reference Vo, D. T., Nyuyen, T. Q., Yea, S., & Vetro, A. (2009). Adaptive Fuzzy Filtering for artifact reduction in compressed images and videos. IEEE Transactions on Image Processing, 18(6), 1166–1178.MathSciNetMATHCrossRef Vo, D. T., Nyuyen, T. Q., Yea, S., & Vetro, A. (2009). Adaptive Fuzzy Filtering for artifact reduction in compressed images and videos. IEEE Transactions on Image Processing, 18(6), 1166–1178.MathSciNetMATHCrossRef
12.
go back to reference Nath, N. K., Hazarika, D., Mahanta, A. (2010). Blocking Artifacts reduction using adaptive bilateral filtering. Proceedings of the IEEE International conference on Signal Processing and Communication. pp. 1–5. Nath, N. K., Hazarika, D., Mahanta, A. (2010). Blocking Artifacts reduction using adaptive bilateral filtering. Proceedings of the IEEE International conference on Signal Processing and Communication. pp. 1–5.
13.
go back to reference Wang, C., Zhou, J., & Liu, S. (2013). Adaptive non-local means filter for image deblocking. Signal Processing: Image Communication, 28, 522–530. Wang, C., Zhou, J., & Liu, S. (2013). Adaptive non-local means filter for image deblocking. Signal Processing: Image Communication, 28, 522–530.
14.
go back to reference Chen, Tao, Hong Ren, Wu., & Qiu, Bin. (2001). Adaptive post filtering of transform coefficients for the reduction of blocking artifacts. IEEE Transaction on Circuits Systems and Video Technology, 11(5), 594–602.CrossRef Chen, Tao, Hong Ren, Wu., & Qiu, Bin. (2001). Adaptive post filtering of transform coefficients for the reduction of blocking artifacts. IEEE Transaction on Circuits Systems and Video Technology, 11(5), 594–602.CrossRef
15.
go back to reference Luo, Y., & Ward, R. K. (2003). Removing the blocking artifacts of block based DCT compressed images. IEEE Transaction on Image Processing, 12(7), 838–842.CrossRef Luo, Y., & Ward, R. K. (2003). Removing the blocking artifacts of block based DCT compressed images. IEEE Transaction on Image Processing, 12(7), 838–842.CrossRef
16.
go back to reference Popovici, I., & Douglas, W. (2007). Locating edges and removing ringing artifacts in JPEG images by frequency-domain analysis. IEEE Transactions on Image Processing, 16(5), 1470–1474.MathSciNetCrossRef Popovici, I., & Douglas, W. (2007). Locating edges and removing ringing artifacts in JPEG images by frequency-domain analysis. IEEE Transactions on Image Processing, 16(5), 1470–1474.MathSciNetCrossRef
17.
go back to reference Kim, S. D., Kim, H. M., & Ra, J. B. (1999). A deblocking filter with two separate modes in block based video coding. IEEE Transactions on Circuits and Systems for Video Technology, 9(1), 156–160.CrossRef Kim, S. D., Kim, H. M., & Ra, J. B. (1999). A deblocking filter with two separate modes in block based video coding. IEEE Transactions on Circuits and Systems for Video Technology, 9(1), 156–160.CrossRef
18.
go back to reference Joch, L. P., Lainema, A., Bjntegaard, J., & Karczewicz, G. (2003). Adaptive deblocking filter. IEEE Transactions on Circuits and Systems for Video Technology, 13(7), 614–619.CrossRef Joch, L. P., Lainema, A., Bjntegaard, J., & Karczewicz, G. (2003). Adaptive deblocking filter. IEEE Transactions on Circuits and Systems for Video Technology, 13(7), 614–619.CrossRef
19.
go back to reference Tai, S. C., Chen, Y. Y., & Sheu, S. F. (2005). Deblocking filter for low bit rate MPEG4 video. IEEE Transactions on Circuits and Systems for Video Technology, 15(6), 731–733. Tai, S. C., Chen, Y. Y., & Sheu, S. F. (2005). Deblocking filter for low bit rate MPEG4 video. IEEE Transactions on Circuits and Systems for Video Technology, 15(6), 731–733.
20.
go back to reference Averbuch, A. Z., Schclar, A., & Donoho, D. L. (2005). Deblocking of block- transform compressed images using weighted sums of symmetrically aligned pixels. IEEE Transactions on Image Processing, 14(2), 200–212.MATHCrossRef Averbuch, A. Z., Schclar, A., & Donoho, D. L. (2005). Deblocking of block- transform compressed images using weighted sums of symmetrically aligned pixels. IEEE Transactions on Image Processing, 14(2), 200–212.MATHCrossRef
21.
go back to reference Lim, T., Ryu, J., & Kim, J. (2008). Adaptive deblocking method using a transform table of different dimension DCT. IEEE Transactions on Consumer Electronics, 54(4), 1–5.CrossRef Lim, T., Ryu, J., & Kim, J. (2008). Adaptive deblocking method using a transform table of different dimension DCT. IEEE Transactions on Consumer Electronics, 54(4), 1–5.CrossRef
22.
go back to reference Palaparthi, R., & Srivastava, V. K. (2012). A simple deblocking method for the reduction of blocking artifacts. IEEE Students Conference on Electrical, Electronics and Computer Science. pp. 1–4. Palaparthi, R., & Srivastava, V. K. (2012). A simple deblocking method for the reduction of blocking artifacts. IEEE Students Conference on Electrical, Electronics and Computer Science. pp. 1–4.
23.
go back to reference Kaur, A., Sidhu, J. S., & Bhullar, J. S. (2021). Adaptive deblocking technique based on separate modes for removing compression effects in JPEG coded images. International Journal of Computers and Applications, 43(6), 501–513.CrossRef Kaur, A., Sidhu, J. S., & Bhullar, J. S. (2021). Adaptive deblocking technique based on separate modes for removing compression effects in JPEG coded images. International Journal of Computers and Applications, 43(6), 501–513.CrossRef
24.
go back to reference Minami, S., & Zakhor, A. (1995). An optimization approach for removing blocking effects in transform coding. IEEE Transactions on Circuits and Systems for Video Technology, 5(2), 74–85.CrossRef Minami, S., & Zakhor, A. (1995). An optimization approach for removing blocking effects in transform coding. IEEE Transactions on Circuits and Systems for Video Technology, 5(2), 74–85.CrossRef
25.
go back to reference Jeon, B., & Jeong, J. (1998). Blocking artifacts reduction in image compression with block boundary discontinuity criterion. IEEE Transaction on Circuits Systems and Video Technology, 8(3), 345–357.CrossRef Jeon, B., & Jeong, J. (1998). Blocking artifacts reduction in image compression with block boundary discontinuity criterion. IEEE Transaction on Circuits Systems and Video Technology, 8(3), 345–357.CrossRef
26.
go back to reference Zeng, B. (1999). Reduction of blocking effect in DCT-coded images using zero-masking techniques. Signal Processing, 79(2), 205–211.MATHCrossRef Zeng, B. (1999). Reduction of blocking effect in DCT-coded images using zero-masking techniques. Signal Processing, 79(2), 205–211.MATHCrossRef
27.
go back to reference Liu, S., & Bovil, A. C. (2002). Efficient DCT-domain blind measurement and Reduction of blocking Artifacts. IEEE Transaction on Circuits Systems and Video Technology, 12(12), 1139–1149.CrossRef Liu, S., & Bovil, A. C. (2002). Efficient DCT-domain blind measurement and Reduction of blocking Artifacts. IEEE Transaction on Circuits Systems and Video Technology, 12(12), 1139–1149.CrossRef
28.
go back to reference Liew, A. W. C., & Yan, H. (2004). Blocking artifacts suppression in block-coded images using overcomplete wavelet representation. IEEE Transactions on Circuits and Systems for Video Technology, 14(4), 450–461.CrossRef Liew, A. W. C., & Yan, H. (2004). Blocking artifacts suppression in block-coded images using overcomplete wavelet representation. IEEE Transactions on Circuits and Systems for Video Technology, 14(4), 450–461.CrossRef
29.
go back to reference Zhai, G., Zhang, W., Yang, X., Lin, W., & Xu, Y. (2008). Efficient deblocking with coefficient regularization, shape-adaptive filtering and quantization constraint. IEEE Transactions on Multimedia, 10(5), 735–745.CrossRef Zhai, G., Zhang, W., Yang, X., Lin, W., & Xu, Y. (2008). Efficient deblocking with coefficient regularization, shape-adaptive filtering and quantization constraint. IEEE Transactions on Multimedia, 10(5), 735–745.CrossRef
30.
go back to reference Rourke, T. P. O., & Stevenson, R. L. (1995). Improved image decompression for reduced transform coding artifacts. IEEE Transactions on Circuits and Systems for Video Technology, 5(6), 490–499.CrossRef Rourke, T. P. O., & Stevenson, R. L. (1995). Improved image decompression for reduced transform coding artifacts. IEEE Transactions on Circuits and Systems for Video Technology, 5(6), 490–499.CrossRef
31.
go back to reference Ozcelik, T., Brailean, J. C., & Katsaggelos, A. K. (1995). Image and video compression algorithms based on recovery techniques using mean field annealing. Proceedings of the IEEE, 83(2), 304–316.CrossRef Ozcelik, T., Brailean, J. C., & Katsaggelos, A. K. (1995). Image and video compression algorithms based on recovery techniques using mean field annealing. Proceedings of the IEEE, 83(2), 304–316.CrossRef
32.
go back to reference Meier, T., Ngan, K. N., & Crebbin, G. (1999). Reduction of blocking artifacts in image and video coding. IEEE Transactions on Circuits and Systems for Video Technology, 9(3), 490–500.CrossRef Meier, T., Ngan, K. N., & Crebbin, G. (1999). Reduction of blocking artifacts in image and video coding. IEEE Transactions on Circuits and Systems for Video Technology, 9(3), 490–500.CrossRef
33.
go back to reference Zhang, X., Xiong, R., Fan, X., Ma, S., & Gao, W. (2013). Compression artifact reduction by overlapped-block transform coefficient estimation with block similarity. IEEE Transactions on Image Processing, 22(12), 4613–4626.MathSciNetMATHCrossRef Zhang, X., Xiong, R., Fan, X., Ma, S., & Gao, W. (2013). Compression artifact reduction by overlapped-block transform coefficient estimation with block similarity. IEEE Transactions on Image Processing, 22(12), 4613–4626.MathSciNetMATHCrossRef
34.
go back to reference Unal, G. B., & Cetin, A. E. (2001). Restoration of error-diffused images using projection onto convex sets. IEEE Transactions on Image Processing, 10(12), 1836–1841.MATHCrossRef Unal, G. B., & Cetin, A. E. (2001). Restoration of error-diffused images using projection onto convex sets. IEEE Transactions on Image Processing, 10(12), 1836–1841.MATHCrossRef
35.
go back to reference Zakhor, A. (1992). Iterative procedures for reduction of blocking effects in transform image coding. IEEE Transactions on Circuits and Systems for Video Technology, 2(1), 91–95.CrossRef Zakhor, A. (1992). Iterative procedures for reduction of blocking effects in transform image coding. IEEE Transactions on Circuits and Systems for Video Technology, 2(1), 91–95.CrossRef
36.
go back to reference Yang, Y., & Galatsanos, N. P. (1997). Removal of compression artifacts using projections onto convex sets and line process modeling. IEEE Transactions on Image Processing, 6(10), 1345–1357.CrossRef Yang, Y., & Galatsanos, N. P. (1997). Removal of compression artifacts using projections onto convex sets and line process modeling. IEEE Transactions on Image Processing, 6(10), 1345–1357.CrossRef
37.
go back to reference Kim, Y., Park, C. S., & Ko, S. J. (2003). Fast POCS based post-processing technique for HDTV. IEEE Transaction in Consumer Electronics, 49(4), 1438–1447.CrossRef Kim, Y., Park, C. S., & Ko, S. J. (2003). Fast POCS based post-processing technique for HDTV. IEEE Transaction in Consumer Electronics, 49(4), 1438–1447.CrossRef
38.
go back to reference Zou, J. J., & Yan, H. (2005). A deblocking method for BDCT compressed images based on adaptive projections. IEEE Transaction on Circuits and System for Video Technology, 15(3), 430–435.CrossRef Zou, J. J., & Yan, H. (2005). A deblocking method for BDCT compressed images based on adaptive projections. IEEE Transaction on Circuits and System for Video Technology, 15(3), 430–435.CrossRef
39.
go back to reference Paek, H., & Haseyama, R. C. H. (2011). Missing intensity interpolation using a kernel PCA-based POCS algorithm and its applications. IEEE Transactions on Image Processing, 20(2), 417–432.MathSciNetMATHCrossRef Paek, H., & Haseyama, R. C. H. (2011). Missing intensity interpolation using a kernel PCA-based POCS algorithm and its applications. IEEE Transactions on Image Processing, 20(2), 417–432.MathSciNetMATHCrossRef
40.
go back to reference Zhang, Z., Yang, J., & Zhang, D. (2015). A Survey of sparse representation: Algorithms and applications. IEEE Biometrics Compendium, 3(1), 490–530. Zhang, Z., Yang, J., & Zhang, D. (2015). A Survey of sparse representation: Algorithms and applications. IEEE Biometrics Compendium, 3(1), 490–530.
41.
go back to reference Michal, A., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.MATHCrossRef Michal, A., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.MATHCrossRef
42.
go back to reference Choi, I., Kim, S. (2013). A learning based Approach to reduce JPEG Artifacts in Image Matting. Proceedings of the IEEE Conferences in Computer Vision, Sydney, NSW, Australia. pp. 2880–2887. Choi, I., Kim, S. (2013). A learning based Approach to reduce JPEG Artifacts in Image Matting. Proceedings of the IEEE Conferences in Computer Vision, Sydney, NSW, Australia. pp. 2880–2887.
43.
go back to reference Liu, X., Wu, X., Zhou, J., & Zhao, D.,(2015).Inter-block consistent soft decoding of jpeg images with sparsity and graph-signal smoothness priors. Proceedings of the IEEE International Conference on Image Processing ,Quebeu City, QC, Canada. pp. 1628–1632. Liu, X., Wu, X., Zhou, J., & Zhao, D.,(2015).Inter-block consistent soft decoding of jpeg images with sparsity and graph-signal smoothness priors. Proceedings of the IEEE International Conference on Image Processing ,Quebeu City, QC, Canada. pp. 1628–1632.
44.
go back to reference Huibin, C., Michael, K., & Tieyong, Z. (2014). Reducing artifact in JPEG decompression via a learned dictionary. IEEE Transactions on Image Processing, 62(3), 718–728.MathSciNetMATHCrossRef Huibin, C., Michael, K., & Tieyong, Z. (2014). Reducing artifact in JPEG decompression via a learned dictionary. IEEE Transactions on Image Processing, 62(3), 718–728.MathSciNetMATHCrossRef
45.
go back to reference Liu, X., Wu, X., Zhou, J., & Zhao, D., (2013). Sparsity-based decoding of compressed images in transform domain. Proceedings of the IEEE International Conference on Image Processing, Melbourne, VIC, Australia. pp. 563–566. Liu, X., Wu, X., Zhou, J., & Zhao, D., (2013). Sparsity-based decoding of compressed images in transform domain. Proceedings of the IEEE International Conference on Image Processing, Melbourne, VIC, Australia. pp. 563–566.
46.
go back to reference Liu, X., Wu, X., Zhou, J., & Zhao, D. (2016). Data-driven soft decoding of compressed images in dual transform-pixel domain. IEEE Transactions on Image Processing., 25(4), 1649–1659.MathSciNetMATHCrossRef Liu, X., Wu, X., Zhou, J., & Zhao, D. (2016). Data-driven soft decoding of compressed images in dual transform-pixel domain. IEEE Transactions on Image Processing., 25(4), 1649–1659.MathSciNetMATHCrossRef
47.
go back to reference Zhao, C., Zhang, J., Ma, S., Fan, X., Zhang, Y., & Gao, W. (2017). reducing image compression artifacts by structural sparse representation and quantization constraint prior. IEEE Transactions on Circuits and Systems for Video Technology, 27(10), 1–14.CrossRef Zhao, C., Zhang, J., Ma, S., Fan, X., Zhang, Y., & Gao, W. (2017). reducing image compression artifacts by structural sparse representation and quantization constraint prior. IEEE Transactions on Circuits and Systems for Video Technology, 27(10), 1–14.CrossRef
48.
go back to reference Patel, E., & Gangwar, M. (2017). Analysis of novel de-blocking method for blocking artifacts reduction. International Conference on Communication and Signal Processing.April 6–8, Chennai, India. pp. 1452–1456. Patel, E., & Gangwar, M. (2017). Analysis of novel de-blocking method for blocking artifacts reduction. International Conference on Communication and Signal Processing.April 6–8, Chennai, India. pp. 1452–1456.
49.
go back to reference Itier, V., Kucharczak, F., Strauss, O., & Puech, W. (2018). Interval-valued JPEG decompression for artifact suppression. Eighth International Conference on Image Processing Theory, Tools and Applications, China. Itier, V., Kucharczak, F., Strauss, O., & Puech, W. (2018). Interval-valued JPEG decompression for artifact suppression. Eighth International Conference on Image Processing Theory, Tools and Applications, China.
50.
go back to reference Singh, A., & Singh, J. (2019). Blocking artifacts removal of DCT based highly compressed images. Second International Conference on Intelligent Computing, Instrumentation and Control Technologies, Kannur, Kerala. Singh, A., & Singh, J. (2019). Blocking artifacts removal of DCT based highly compressed images. Second International Conference on Intelligent Computing, Instrumentation and Control Technologies, Kannur, Kerala.
51.
go back to reference Chen, H., He, X., An, C., & Nguyen, T. Q. (2019). Deep wide-activated residual network based joint blocking and color bleeding artifacts reduction for 4:2:0 JPEG-compressed images. IEEE Signal Processing Letters, 26(1), 79–83.CrossRef Chen, H., He, X., An, C., & Nguyen, T. Q. (2019). Deep wide-activated residual network based joint blocking and color bleeding artifacts reduction for 4:2:0 JPEG-compressed images. IEEE Signal Processing Letters, 26(1), 79–83.CrossRef
52.
go back to reference Kaushik, M. K., Chandrakala, G.C., & Raj Abhinay. (2018). Ringing and blur artifact removal in image processing applications. Second International conference on intelligent computing and control systems, Madurai, India. 260–264. Kaushik, M. K., Chandrakala, G.C., & Raj Abhinay. (2018). Ringing and blur artifact removal in image processing applications. Second International conference on intelligent computing and control systems, Madurai, India. 260–264.
53.
go back to reference Song, Q., Xiong, R., Fan, X., Liu, D., Feng, W., Huang, T., & Gao, W. (2020). Compressed image restoration via artifacts-free PCA basis learning and adaptive sparse modeling. IEEE Transactions on Image Processing, 29, 7399–7413.MathSciNetCrossRef Song, Q., Xiong, R., Fan, X., Liu, D., Feng, W., Huang, T., & Gao, W. (2020). Compressed image restoration via artifacts-free PCA basis learning and adaptive sparse modeling. IEEE Transactions on Image Processing, 29, 7399–7413.MathSciNetCrossRef
54.
go back to reference Zhu, J., Lv, H., Li, K., & Hao, B. (2020). Constrained minimization problem for image restoration based on non-convex hybrid regularization. IEEE Access, 8, 162657–162667.CrossRef Zhu, J., Lv, H., Li, K., & Hao, B. (2020). Constrained minimization problem for image restoration based on non-convex hybrid regularization. IEEE Access, 8, 162657–162667.CrossRef
55.
go back to reference Figueiredo, M., Nowak, R. D., & Wright, S. J. (2007). Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing., 1(4), 586–597.CrossRef Figueiredo, M., Nowak, R. D., & Wright, S. J. (2007). Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing., 1(4), 586–597.CrossRef
56.
go back to reference Kim, S. J., Koh, K., Lustig, M., Boyd, S., & Gorinevsky, D. (2007). An interior-point method for large- scale l1-regularized least squares. IEEE Journal of Selected Topics in Signal Processing, 1(4), 606–617.CrossRef Kim, S. J., Koh, K., Lustig, M., Boyd, S., & Gorinevsky, D. (2007). An interior-point method for large- scale l1-regularized least squares. IEEE Journal of Selected Topics in Signal Processing, 1(4), 606–617.CrossRef
57.
go back to reference Yang, J., & Zhang, Y. (2011). Alternating direction algorithms for l1-problems in compressive sensing. IEEE Transaction in Information Theory, 33(1), 250–278.MATH Yang, J., & Zhang, Y. (2011). Alternating direction algorithms for l1-problems in compressive sensing. IEEE Transaction in Information Theory, 33(1), 250–278.MATH
58.
go back to reference Venkatakrishnan, S. V., Bouman, C. A., & Wohlberg, B., (2013).Plug-and-play priors for model based reconstruction. IEEE Global conference on signal and information processing. pp. 945–948. Venkatakrishnan, S. V., Bouman, C. A., & Wohlberg, B., (2013).Plug-and-play priors for model based reconstruction. IEEE Global conference on signal and information processing. pp. 945–948.
59.
go back to reference Xie, B., Lv, Z., Yang, J., Shen, J. (2021). Regularization model based on transmission constraints. IEEE International conference on consumer electronics and computer Engineering, Guangzhou, China. pp. 560–564. Xie, B., Lv, Z., Yang, J., Shen, J. (2021). Regularization model based on transmission constraints. IEEE International conference on consumer electronics and computer Engineering, Guangzhou, China. pp. 560–564.
60.
go back to reference Zha, Z., Yuan, X., Wen, B., Zhang, J., Zhou, J., & Zhu, C. (2020). Image Restoration Using Joint Patch-Group-Based Sparse Representation. IEEE Transactions on Image Processing, 29(1), 7735–7750.CrossRef Zha, Z., Yuan, X., Wen, B., Zhang, J., Zhou, J., & Zhu, C. (2020). Image Restoration Using Joint Patch-Group-Based Sparse Representation. IEEE Transactions on Image Processing, 29(1), 7735–7750.CrossRef
61.
go back to reference Wang, Z. X., Wang, H. Q., & Ren, S. L. (2021). Research on ADMM Reconstruction algorithm of Photoacoustic tomography with limited sampling data. IEEE Access, 9, 113631–113641.CrossRef Wang, Z. X., Wang, H. Q., & Ren, S. L. (2021). Research on ADMM Reconstruction algorithm of Photoacoustic tomography with limited sampling data. IEEE Access, 9, 113631–113641.CrossRef
62.
go back to reference Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3-D transform- domain collaborative filtering. IEEE Transactions on Image Processing, 16(8), 2080–2095.MathSciNetCrossRef Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3-D transform- domain collaborative filtering. IEEE Transactions on Image Processing, 16(8), 2080–2095.MathSciNetCrossRef
63.
go back to reference Wang, Z., Bovik, A. C., Sheikh, H. R., & Simonelli, E. P. (2004). Image quality assessment: From error measurement to structural Similarity. IEEE Transactions on Image Processing, 13(1), 600–612.CrossRef Wang, Z., Bovik, A. C., Sheikh, H. R., & Simonelli, E. P. (2004). Image quality assessment: From error measurement to structural Similarity. IEEE Transactions on Image Processing, 13(1), 600–612.CrossRef
64.
go back to reference Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84. Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84.
65.
go back to reference Zhang, L., Zhang, L., Mou, X., & Zhang, D. (2011). FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Transactions on Image Processing, 20(8), 2378–2386.MathSciNetMATHCrossRef Zhang, L., Zhang, L., Mou, X., & Zhang, D. (2011). FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Transactions on Image Processing, 20(8), 2378–2386.MathSciNetMATHCrossRef
Metadata
Title
Compressed Image Restoration by Combining Trained Dictionary with Plug and Play Framework
Authors
M. S. Sujithra
N. Sugitha
Publication date
19-02-2022
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09490-8

Other articles of this Issue 4/2022

Wireless Personal Communications 4/2022 Go to the issue