Skip to main content
Top
Published in: Wireless Personal Communications 4/2022

18-01-2022

A Collision-Free Scheduling Algorithm with Minimum Data Redundancy Transmission for TSCH

Authors: Sarra Hammoudi, Hamza Ourzeddine, Mourad Gueroui, Saad Harous, Zibouda Aliouat

Published in: Wireless Personal Communications | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The IEEE 802.15.4e specified the Time Slotted Channel Hopping (TSCH) that uses multi-channels and shared links to ensure a reliable and efficient data transmission in IoT applications. However, the standard does not define any scheduling mechanism for the network configuration. The main problem in TSCH is triggered when hidden nodes in a shared link transmit data at the same time. A collision happens even if the hidden nodes apply CSMA/CA before starting data transmission. To solve this problem, we propose Interference Collision Free Scheduling (ICFS), and Interference Collision Free Scheduling-Without Redundant Data (ICFS-WRD) algorithms to reduce the internal collisions caused by hidden nodes on shared links. The ICFS-WRD approach stands in contrast to proposals in the recent literature where shared links of the proposed TSCH schedules are free from colliding nodes. ICFS-WRD intentionally schedules the colliding nodes that sense redundant data on the same shared link, and let them alternate in transmitting data. This mechanism is targeted to sparse more cells for future flows, reduce the slot-frame size, increase the network’s lifetime and avoid transmitting redundant data. We propose a clustering technique to build a multi-hop cluster based convergecast traffic routing approach with a unique sink, on which we implement the scheduling algorithms. The proposed algorithms have been tested through simulations using network simulator NS3. The results show improvements in terms of energy consumption (ICFS saves approximately 23%), packets delivery ratio (ICFS achieves approximately 96.5%), and latency (ICFS-WRD delivers the packets twice faster than ICFS). We discuss some theorems and proofs that show that ICFS-WRD reduces the slot-frame size, increases the network lifetime, avoids transmitting redundant data, and minimizes the network’s congestion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Procopiou, A., Komninos, N., & Douligeris, C. (2019). Forchaos: Real time application ddos detection using forecasting and chaos theory in smart home iot network. Wireless Communications and Mobile Computing, 2019. Procopiou, A., Komninos, N., & Douligeris, C. (2019). Forchaos: Real time application ddos detection using forecasting and chaos theory in smart home iot network. Wireless Communications and Mobile Computing, 2019.
2.
go back to reference Jansson, J., & Hakala, I. (2020). Managing sensor data streams in a smart home application. International Journal of Sensor Networks, 32(4), 247–258.CrossRef Jansson, J., & Hakala, I. (2020). Managing sensor data streams in a smart home application. International Journal of Sensor Networks, 32(4), 247–258.CrossRef
3.
go back to reference Jovanov, E. (2019). Wearables meet iot: Synergistic personal area networks (spans). Sensors, 19(19), 4295.CrossRef Jovanov, E. (2019). Wearables meet iot: Synergistic personal area networks (spans). Sensors, 19(19), 4295.CrossRef
4.
go back to reference Gasco-Hernandez, M., Rodríguez Bolívar, Manuel P., & Nam, T. (2019). Introduction to the minitrack on smart and connected cities and communities. In Proceedings of the 52nd Hawaii International Conference on System Sciences. Gasco-Hernandez, M., Rodríguez Bolívar, Manuel P., & Nam, T. (2019). Introduction to the minitrack on smart and connected cities and communities. In Proceedings of the 52nd Hawaii International Conference on System Sciences.
5.
go back to reference Ning, Z., Huang, J., & Wang, X. (2019). Vehicular fog computing: Enabling real-time traffic management for smart cities. IEEE Wireless Communications, 26(1), 87–93.CrossRef Ning, Z., Huang, J., & Wang, X. (2019). Vehicular fog computing: Enabling real-time traffic management for smart cities. IEEE Wireless Communications, 26(1), 87–93.CrossRef
6.
go back to reference Hossain, M. S., Muhammad, G., & Alamri, A. (2019). Smart healthcare monitoring: A voice pathology detection paradigm for smart cities. Multimedia Systems, 25(5), 565–575.CrossRef Hossain, M. S., Muhammad, G., & Alamri, A. (2019). Smart healthcare monitoring: A voice pathology detection paradigm for smart cities. Multimedia Systems, 25(5), 565–575.CrossRef
7.
go back to reference Hodgson, N., Laha, M., Lee, TS., Haloui, H., Heming, S., & Steinkopff, A. (2019). Industrial ultrafast lasers–systems, processing fundamentals, and applications. In CLEO: Science and Innovations, pages JM3E–1. Optical Society of America. Hodgson, N., Laha, M., Lee, TS., Haloui, H., Heming, S., & Steinkopff, A. (2019). Industrial ultrafast lasers–systems, processing fundamentals, and applications. In CLEO: Science and Innovations, pages JM3E–1. Optical Society of America.
8.
go back to reference Kaiwartya, O., Abdullah, A. H., Cao, Y., Altameem, A., Prasad, M., Lin, C.-T., & Liu, X. (2016). Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects. IEEE Access, 4(5356–5373), 2016. Kaiwartya, O., Abdullah, A. H., Cao, Y., Altameem, A., Prasad, M., Lin, C.-T., & Liu, X. (2016). Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects. IEEE Access, 4(5356–5373), 2016.
9.
go back to reference Nijhawan, M., Singal, P., & Jindal, H. (2019). Handwriting detection using neural network. Nijhawan, M., Singal, P., & Jindal, H. (2019). Handwriting detection using neural network.
10.
go back to reference Jindal, H., Saxena, S., & Kasana, S. S. (2018). A sustainable multi-parametric sensors network topology for river water quality monitoring. Wireless Networks, 24(8), 3241–3265.CrossRef Jindal, H., Saxena, S., & Kasana, S. S. (2018). A sustainable multi-parametric sensors network topology for river water quality monitoring. Wireless Networks, 24(8), 3241–3265.CrossRef
11.
go back to reference Jindal, H., Singh, H., Bharti, M. (2018). Modified cuckoo search for resource allocation on social internet-of-things. In 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), pp 465–470. IEEE. Jindal, H., Singh, H., Bharti, M. (2018). Modified cuckoo search for resource allocation on social internet-of-things. In 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), pp 465–470. IEEE.
12.
go back to reference Kaur, S., & Jindal, H. (2017). Enhanced image watermarking technique using wavelets and interpolation. International Journal of Image, Graphics and Signal Processing, 9(7), 23.CrossRef Kaur, S., & Jindal, H. (2017). Enhanced image watermarking technique using wavelets and interpolation. International Journal of Image, Graphics and Signal Processing, 9(7), 23.CrossRef
13.
go back to reference Spachos, P., Papapanagiotou, I., & Plataniotis, K. N. (2018). Microlocation for smart buildings in the era of the internet of things: A survey of technologies, techniques, and approaches. IEEE Signal Processing Magazine, 35(5), 140–152.CrossRef Spachos, P., Papapanagiotou, I., & Plataniotis, K. N. (2018). Microlocation for smart buildings in the era of the internet of things: A survey of technologies, techniques, and approaches. IEEE Signal Processing Magazine, 35(5), 140–152.CrossRef
14.
go back to reference Hammoudi, S., Aliouat, Z., & Harous, S. (2018). Challenges and research directions for internet of things. Telecommunication Systems, 67(2), 367–385.CrossRef Hammoudi, S., Aliouat, Z., & Harous, S. (2018). Challenges and research directions for internet of things. Telecommunication Systems, 67(2), 367–385.CrossRef
15.
go back to reference Hammoudi, S., Harous, S., Aliouat, Z., & Louail, L. (2018). Time slotted channel hopping with collision avoidance. International Journal of Ad Hoc and Ubiquitous Computing, 29(1–2), 85–102.CrossRef Hammoudi, S., Harous, S., Aliouat, Z., & Louail, L. (2018). Time slotted channel hopping with collision avoidance. International Journal of Ad Hoc and Ubiquitous Computing, 29(1–2), 85–102.CrossRef
16.
go back to reference Le, H-C., Guyennet, H., & Felea, V. (2007). Obmac: an overhearing based mac protocol for wireless sensor networks. In 2007 International Conference on Sensor Technologies and Applications (SENSORCOMM 2007), pp 547–553. IEEE. Le, H-C., Guyennet, H., & Felea, V. (2007). Obmac: an overhearing based mac protocol for wireless sensor networks. In 2007 International Conference on Sensor Technologies and Applications (SENSORCOMM 2007), pp 547–553. IEEE.
17.
go back to reference Younis, O., Krunz, M., & Ramasubramanian, S. (2006). Node clustering in wireless sensor networks: Recent developments and deployment challenges. IEEE Network, 20(3), 20–25.CrossRef Younis, O., Krunz, M., & Ramasubramanian, S. (2006). Node clustering in wireless sensor networks: Recent developments and deployment challenges. IEEE Network, 20(3), 20–25.CrossRef
18.
go back to reference IEC. Industrial communication networks wireless communication network and communication profiles wirelesshart. 2010. IEC. Industrial communication networks wireless communication network and communication profiles wirelesshart. 2010.
19.
go back to reference ANSI/ISA. Ansi/isa-100.11a-2011 wireless systems for industrial automation: Process control and related applications. 2011. ANSI/ISA. Ansi/isa-100.11a-2011 wireless systems for industrial automation: Process control and related applications. 2011.
20.
go back to reference Ieee standard for low-rate wireless networks. IEEE Std 802.15.4 TM-2015, 2015. Ieee standard for low-rate wireless networks. IEEE Std 802.15.4 TM-2015, 2015.
21.
go back to reference Hammoudi, S., Aliouat, Z., & Harous, S. (2021). Enhanced time-slotted channel hopping. Transactions on Emerging Telecommunications Technologies, 35, e3638. Hammoudi, S., Aliouat, Z., & Harous, S. (2021). Enhanced time-slotted channel hopping. Transactions on Emerging Telecommunications Technologies, 35, e3638.
22.
go back to reference Hammoudi, S., Harous, S., & Aliouat, Z. (2018). External interference free channel access strategy dedicated to tsch. In 2018 IEEE International Conference on Electro/Information Technology (EIT), pp 0350–0355. IEEE. Hammoudi, S., Harous, S., & Aliouat, Z. (2018). External interference free channel access strategy dedicated to tsch. In 2018 IEEE International Conference on Electro/Information Technology (EIT), pp 0350–0355. IEEE.
23.
go back to reference Nikoukar, A., Raza, S., Poole, A., Güneş, M., & Dezfouli, B. (2018). Low-power wireless for the internet of things: Standards and applications. IEEE Access, 6, 67893–67926.CrossRef Nikoukar, A., Raza, S., Poole, A., Güneş, M., & Dezfouli, B. (2018). Low-power wireless for the internet of things: Standards and applications. IEEE Access, 6, 67893–67926.CrossRef
24.
go back to reference De Guglielmo, D., Brienza, S., & Anastasi, G. (2016). Ieee 802.15. 4e: A survey. Computer Communications, 88, 1–24.CrossRef De Guglielmo, D., Brienza, S., & Anastasi, G. (2016). Ieee 802.15. 4e: A survey. Computer Communications, 88, 1–24.CrossRef
25.
go back to reference Watteyne, T., Palattella, M-R., & Grieco, LA. (2015). Using ieee 802.15. 4e time-slotted channel hopping (tsch) in the internet of things (iot): Problem statement. Watteyne, T., Palattella, M-R., & Grieco, LA. (2015). Using ieee 802.15. 4e time-slotted channel hopping (tsch) in the internet of things (iot): Problem statement.
26.
go back to reference Rezaee, A,C., Vincent WS. (2019). Diversity routing to improve delay-jitter tradeoff in uncertain network environments. In ICC 2019-2019 IEEE International Conference on Communications (ICC), pp 1–7. IEEE. Rezaee, A,C., Vincent WS. (2019). Diversity routing to improve delay-jitter tradeoff in uncertain network environments. In ICC 2019-2019 IEEE International Conference on Communications (ICC), pp 1–7. IEEE.
27.
go back to reference Papadopoulos, Georgios Z., Matsui, T., Thubert, P., Texier, G., Watteyne, T., & Montavont, N. (2017). Leapfrog collaboration: Toward determinism and predictability in industrial-iot applications. In 2017 IEEE International Conference on Communications (ICC), pp 1–6. IEEE. Papadopoulos, Georgios Z., Matsui, T., Thubert, P., Texier, G., Watteyne, T., & Montavont, N. (2017). Leapfrog collaboration: Toward determinism and predictability in industrial-iot applications. In 2017 IEEE International Conference on Communications (ICC), pp 1–6. IEEE.
28.
go back to reference Demir, A. K., & Bilgili, S. (2019). Diva: a distributed divergecast scheduling algorithm for ieee 802.15. 4e tsch networks. Wireless Networks, 25(2), 625–635. Demir, A. K., & Bilgili, S. (2019). Diva: a distributed divergecast scheduling algorithm for ieee 802.15. 4e tsch networks. Wireless Networks, 25(2), 625–635.
29.
go back to reference Meng, M., Yujun, Z., Dadong, Z., & Fan, C. (2018). Scheduling for data transmission in multi-hop ieee 80215.4.e tsch networks. Mobile Networks and Applications, 23(1), 119–125.CrossRef Meng, M., Yujun, Z., Dadong, Z., & Fan, C. (2018). Scheduling for data transmission in multi-hop ieee 80215.4.e tsch networks. Mobile Networks and Applications, 23(1), 119–125.CrossRef
30.
go back to reference Phung, K.-H., Lemmens, B., Goossens, M., Nowe, A., Tran, L., & Steenhaut, K. (2015). Schedule-based multi-channel communication in wireless sensor networks: A complete design and performance evaluation. Ad Hoc Networks, 26, 88–102.CrossRef Phung, K.-H., Lemmens, B., Goossens, M., Nowe, A., Tran, L., & Steenhaut, K. (2015). Schedule-based multi-channel communication in wireless sensor networks: A complete design and performance evaluation. Ad Hoc Networks, 26, 88–102.CrossRef
31.
go back to reference Dujovne, D., Grieco, LA., Palattella, MR., & Accettura, N. (2017). 6tisch 6top scheduling function zero (sf0). Internet Engineering Task Force. Dujovne, D., Grieco, LA., Palattella, MR., & Accettura, N. (2017). 6tisch 6top scheduling function zero (sf0). Internet Engineering Task Force.
32.
go back to reference Hamza, T., & Kaddoum, G. (2019). Enhanced minimal scheduling function for ieee 802.15. 4e tsch networks. In 2019 IEEE Wireless Communications and Networking Conference (WCNC), pp 1–6. IEEE. Hamza, T., & Kaddoum, G. (2019). Enhanced minimal scheduling function for ieee 802.15. 4e tsch networks. In 2019 IEEE Wireless Communications and Networking Conference (WCNC), pp 1–6. IEEE.
33.
go back to reference Duquennoy, S., Al Nahas, B., Landsiedel, O., & Watteyne, T. (2015). Orchestra: Robust mesh networks through autonomously scheduled tsch. In Proceedings of the 13th ACM conference on embedded networked sensor systems, pp 337–350. Duquennoy, S., Al Nahas, B., Landsiedel, O., & Watteyne, T. (2015). Orchestra: Robust mesh networks through autonomously scheduled tsch. In Proceedings of the 13th ACM conference on embedded networked sensor systems, pp 337–350.
34.
go back to reference Kim, S., Kim, H-S., & Kim, C. (2019). Alice: autonomous link-based cell scheduling for tsch. In Proceedings of the 18th International Conference on Information Processing in Sensor Networks, pp 121–132. Kim, S., Kim, H-S., & Kim, C. (2019). Alice: autonomous link-based cell scheduling for tsch. In Proceedings of the 18th International Conference on Information Processing in Sensor Networks, pp 121–132.
35.
go back to reference Karalis, A., Zorbas, D., & Douligeris, C. (2019). Collision-free advertisement scheduling for ieee 802.15. 4-tsch networks. Sensors, 19(8), 1789.CrossRef Karalis, A., Zorbas, D., & Douligeris, C. (2019). Collision-free advertisement scheduling for ieee 802.15. 4-tsch networks. Sensors, 19(8), 1789.CrossRef
36.
go back to reference Karalis, A. (2018). Atp: A fast joining technique for ieee802. 15. 4-tsch networks. In 2018 IEEE 19th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), pp 588–599. IEEE. Karalis, A. (2018). Atp: A fast joining technique for ieee802. 15. 4-tsch networks. In 2018 IEEE 19th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), pp 588–599. IEEE.
37.
go back to reference Fahs, AJ., Bertolini, R., Alphand, O., Rousseau, F., Altisen, K., & Devismes, S. (2017). Collision prevention in distributed 6tisch networks. In 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp 1–6. IEEE. Fahs, AJ., Bertolini, R., Alphand, O., Rousseau, F., Altisen, K., & Devismes, S. (2017). Collision prevention in distributed 6tisch networks. In 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp 1–6. IEEE.
38.
go back to reference Palattella, MR., Accettura, N., Dohler, M., Grieco, LA., & Boggia, G. (2012). Traffic aware scheduling algorithm for reliable low-power multi-hop ieee 802.15. 4e networks. In 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications-(PIMRC), pp 327–332. IEEE. Palattella, MR., Accettura, N., Dohler, M., Grieco, LA., & Boggia, G. (2012). Traffic aware scheduling algorithm for reliable low-power multi-hop ieee 802.15. 4e networks. In 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications-(PIMRC), pp 327–332. IEEE.
39.
go back to reference Jeong, S., Kim, H-S., Paek, J., & Bahk, S. (2020). Ost: On-demand tsch scheduling with traffic-awareness. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp 69–78. IEEE. Jeong, S., Kim, H-S., Paek, J., & Bahk, S. (2020). Ost: On-demand tsch scheduling with traffic-awareness. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp 69–78. IEEE.
40.
go back to reference Tavallaie, O., Taheri, J., & Zomaya, Albert Y. (2021). Design and optimization of traffic-aware tsch scheduling for mobile 6tisch networks. In Proceedings of the International Conference on Internet-of-Things Design and Implementation, pp 234–246. Tavallaie, O., Taheri, J., & Zomaya, Albert Y. (2021). Design and optimization of traffic-aware tsch scheduling for mobile 6tisch networks. In Proceedings of the International Conference on Internet-of-Things Design and Implementation, pp 234–246.
41.
go back to reference Accettura, N., Vogli, E., Palattella, M. R., Grieco, L. A., Boggia, G., & Dohler, M. (2015). Decentralized traffic aware scheduling in 6tisch networks: Design and experimental evaluation. IEEE Internet of Things Journal, 2(6), 455–470.CrossRef Accettura, N., Vogli, E., Palattella, M. R., Grieco, L. A., Boggia, G., & Dohler, M. (2015). Decentralized traffic aware scheduling in 6tisch networks: Design and experimental evaluation. IEEE Internet of Things Journal, 2(6), 455–470.CrossRef
42.
go back to reference Network simulator, https://www.nsnam.org, 2018. Network simulator, https://​www.​nsnam.​org, 2018.
Metadata
Title
A Collision-Free Scheduling Algorithm with Minimum Data Redundancy Transmission for TSCH
Authors
Sarra Hammoudi
Hamza Ourzeddine
Mourad Gueroui
Saad Harous
Zibouda Aliouat
Publication date
18-01-2022
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09507-2

Other articles of this Issue 4/2022

Wireless Personal Communications 4/2022 Go to the issue