Skip to main content
Top
Published in: Journal of Materials Science 4/2015

01-02-2015 | Original Paper

Compressive response of Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 shape-memory alloys

Authors: E. Acar, H. Tobe, I. Kaya, H. E. Karaca, Y. I. Chumlyakov

Published in: Journal of Materials Science | Issue 4/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The shape-memory properties of Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 polycrystalline alloys were determined through superelasticity and shape-memory tests in compression. It has been revealed that the Ni45.3Ti34.7Hf15Pd5 has a maximum transformation strain of 3.8 % and work output of up to 30 J cm−3, while the Ni45.3Ti29.7Hf20Pd5 has a maximum transformation strain of 2.6 % and work output of up to 20 J cm−3 at 700 MPa. Two-way shape-memory strains of 0.6 and 0.85 % were obtained in Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 alloys, respectively. The Ni45.3Ti34.7Hf15Pd5 showed superelasticity at 90 °C with recoverable strain of 3.1 %, while high hardening of Ni45.3Ti29.7Hf20Pd5 limited its superelastic behavior. Microstructure of the Ni45.3Ti34.7Hf15Pd5 alloy was revealed by transmission electron microscopy, and effects of composition on the lattice parameters of the transforming phases and martensite morphology were discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Funakubo H (1987) Shape Memory Alloys, Volume 1 of Precision machinery and robotics, Taylor and Francis Funakubo H (1987) Shape Memory Alloys, Volume 1 of Precision machinery and robotics, Taylor and Francis
2.
go back to reference Leo DJ (2007) Engineering analysis of smart material systems. Wiley, New JerseyCrossRef Leo DJ (2007) Engineering analysis of smart material systems. Wiley, New JerseyCrossRef
4.
go back to reference Karaca HE, Saghaian SM, Tobe H, Acar E, Basaran B, Nagasako M et al (2014) Diffusionless phase transformation characteristics of Mn75.7Pt24.3. J Alloy Compd 589:412–415CrossRef Karaca HE, Saghaian SM, Tobe H, Acar E, Basaran B, Nagasako M et al (2014) Diffusionless phase transformation characteristics of Mn75.7Pt24.3. J Alloy Compd 589:412–415CrossRef
5.
go back to reference Noebe RBT, Padula SA, Srivatsan TS (2007) NiTi-based high-temperature shape-memory alloys: properties, prospects, and potential applications. In: Soboyejo WO (ed) Advanced structural materials: properties, design optimization, and applications. Taylor & Francis Group, Boca Raton, pp 145–186 Noebe RBT, Padula SA, Srivatsan TS (2007) NiTi-based high-temperature shape-memory alloys: properties, prospects, and potential applications. In: Soboyejo WO (ed) Advanced structural materials: properties, design optimization, and applications. Taylor & Francis Group, Boca Raton, pp 145–186
6.
go back to reference LeBlanc L (2001) Part I - ‘Smart metals’ providing actuation, sealing, and completion functions downhole. Offshore 61:58–59 LeBlanc L (2001) Part I - ‘Smart metals’ providing actuation, sealing, and completion functions downhole. Offshore 61:58–59
7.
go back to reference LeBlanc L (2002) Part II - ‘Smart metals’ providing actuation, sealing, and completion functions downhole. Offshore 62:54–56 LeBlanc L (2002) Part II - ‘Smart metals’ providing actuation, sealing, and completion functions downhole. Offshore 62:54–56
8.
go back to reference Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, Cambridge Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, Cambridge
10.
go back to reference Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng [G] 221:535–552CrossRef Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng [G] 221:535–552CrossRef
11.
go back to reference Otsuka K, Ren XB (1999) Recent developments in the research of shape memory alloys. Intermetallics 7:511–528CrossRef Otsuka K, Ren XB (1999) Recent developments in the research of shape memory alloys. Intermetallics 7:511–528CrossRef
12.
go back to reference Machado LG, Savi MA (2003) Medical applications of shape memory alloys. Braz J Med Biol Res 36:683–691 Machado LG, Savi MA (2003) Medical applications of shape memory alloys. Braz J Med Biol Res 36:683–691
13.
go back to reference Zhao T, Yang R, Zhong C, Li Y, Xiang Y (2011) Effective inhibition of nickel release by tantalum-implanted TiNi alloy and its cyto-compatibility evaluation in vitro. J Mater Sci 46:2529–2535. doi:10.1007/s10853-010-5104-1 CrossRef Zhao T, Yang R, Zhong C, Li Y, Xiang Y (2011) Effective inhibition of nickel release by tantalum-implanted TiNi alloy and its cyto-compatibility evaluation in vitro. J Mater Sci 46:2529–2535. doi:10.​1007/​s10853-010-5104-1 CrossRef
14.
go back to reference Jan VH (1999) Non-medical applications of shape memory alloys. Mater Sci Eng A 273–275:134–148 Jan VH (1999) Non-medical applications of shape memory alloys. Mater Sci Eng A 273–275:134–148
15.
go back to reference Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678CrossRef Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678CrossRef
16.
go back to reference Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55:257–315CrossRef Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55:257–315CrossRef
17.
go back to reference Karaca HE, Acar E, Tobe H, Saghaian SM (2014) NiTiHf-based shape memory alloys. Mater Sci Technol 30:1530–1544CrossRef Karaca HE, Acar E, Tobe H, Saghaian SM (2014) NiTiHf-based shape memory alloys. Mater Sci Technol 30:1530–1544CrossRef
18.
go back to reference Meng XL, Cai W, Zheng YF, Tong YX, Zhao LC, Zhou LM (2002) Stress-induced martensitic transformation behavior of a Ti–Ni–Hf high temperature shape memory alloy. Mater Lett 55:111–115CrossRef Meng XL, Cai W, Zheng YF, Tong YX, Zhao LC, Zhou LM (2002) Stress-induced martensitic transformation behavior of a Ti–Ni–Hf high temperature shape memory alloy. Mater Lett 55:111–115CrossRef
19.
go back to reference Bigelow GS, Garg A, Padula SA II, Gaydosh DJ, Noebe RD (2011) Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20 alloy. Scripta Mater 64:725–728CrossRef Bigelow GS, Garg A, Padula SA II, Gaydosh DJ, Noebe RD (2011) Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20 alloy. Scripta Mater 64:725–728CrossRef
20.
go back to reference Karaca HE, Saghaian SM, Basaran B, Bigelow GS, Noebe RD, Chumlyakov YI (2011) Compressive response of nickel-rich NiTiHf high-temperature shape memory single crystals along the [111] orientation. Scripta Mater 65:577–580CrossRef Karaca HE, Saghaian SM, Basaran B, Bigelow GS, Noebe RD, Chumlyakov YI (2011) Compressive response of nickel-rich NiTiHf high-temperature shape memory single crystals along the [111] orientation. Scripta Mater 65:577–580CrossRef
21.
go back to reference Karaca HE, Acar E, Ded GS, Basaran B, Tobe H, Noebe RD et al (2013) Shape memory behavior of high strength NiTiHfPd polycrystalline alloys. Acta Mater 61:5036–5049CrossRef Karaca HE, Acar E, Ded GS, Basaran B, Tobe H, Noebe RD et al (2013) Shape memory behavior of high strength NiTiHfPd polycrystalline alloys. Acta Mater 61:5036–5049CrossRef
22.
go back to reference Karaca HE, Acar E, Basaran B, Noebe RD, Chumlyakov YI (2012) Superelastic response and damping capacity of ultrahigh-strength [111]-oriented NiTiHfPd single crystals. Scripta Mater 67:447–450CrossRef Karaca HE, Acar E, Basaran B, Noebe RD, Chumlyakov YI (2012) Superelastic response and damping capacity of ultrahigh-strength [111]-oriented NiTiHfPd single crystals. Scripta Mater 67:447–450CrossRef
23.
go back to reference Acar E, Karaca HE, Basaran B, Yang F, Mills MJ, Noebe RD et al (2013) Role of aging time on the microstructure and shape memory properties of NiTiHfPd single crystals. Mater Sci Eng A 573:161–165CrossRef Acar E, Karaca HE, Basaran B, Yang F, Mills MJ, Noebe RD et al (2013) Role of aging time on the microstructure and shape memory properties of NiTiHfPd single crystals. Mater Sci Eng A 573:161–165CrossRef
24.
go back to reference Karaca HE, Acar E, Basaran B, Noebe RD, Bigelow G, Garg A et al (2012) Effects of aging on [111] oriented NiTiHfPd single crystals under compression. Scripta Mater 67:728–731CrossRef Karaca HE, Acar E, Basaran B, Noebe RD, Bigelow G, Garg A et al (2012) Effects of aging on [111] oriented NiTiHfPd single crystals under compression. Scripta Mater 67:728–731CrossRef
25.
go back to reference Acar E, Karaca HE, Tobe H, Noebe RD, Chumlyakov YI (2013) Characterization of the shape memory properties of a Ni45.3Ti39.7Hf10Pd5 alloy. J Alloy Compd 578:297–302CrossRef Acar E, Karaca HE, Tobe H, Noebe RD, Chumlyakov YI (2013) Characterization of the shape memory properties of a Ni45.3Ti39.7Hf10Pd5 alloy. J Alloy Compd 578:297–302CrossRef
26.
go back to reference Pu ZJ, Tseng H-K, Wu K-H (1994) An innovative system of high temperature shape memory alloys. SPIE, Orlando, p 2189 Pu ZJ, Tseng H-K, Wu K-H (1994) An innovative system of high temperature shape memory alloys. SPIE, Orlando, p 2189
27.
go back to reference Kumar PK, Lagoudas DC (2008) Introduction to shape memory alloys. In: Lagoudas DC (ed) Shape memory alloys. Springer, New York, pp 1–51CrossRef Kumar PK, Lagoudas DC (2008) Introduction to shape memory alloys. In: Lagoudas DC (ed) Shape memory alloys. Springer, New York, pp 1–51CrossRef
28.
go back to reference Sehitoglu H, Hamilton R, Maier HJ, Chumlyakov Y (2004) Hysteresis in NiTi alloys. J Phys IV Fr 115:3–10CrossRef Sehitoglu H, Hamilton R, Maier HJ, Chumlyakov Y (2004) Hysteresis in NiTi alloys. J Phys IV Fr 115:3–10CrossRef
29.
go back to reference Hamilton RF, Sehitoglu H, Chumlyakov Y, Maier HJ (2004) Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater 52:3383–3402CrossRef Hamilton RF, Sehitoglu H, Chumlyakov Y, Maier HJ (2004) Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater 52:3383–3402CrossRef
30.
go back to reference Cui J, Chu YS, Famodu OO, Furuya Y, Hattrick-Simpers J, James RD et al (2006) Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat Mater 5:286–290CrossRef Cui J, Chu YS, Famodu OO, Furuya Y, Hattrick-Simpers J, James RD et al (2006) Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat Mater 5:286–290CrossRef
31.
go back to reference Delville R, Kasinathan S, Zhang ZY, Van Humbeeck J, James RD, Schryvers D (2010) Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys. Philos Mag 90:177–195CrossRef Delville R, Kasinathan S, Zhang ZY, Van Humbeeck J, James RD, Schryvers D (2010) Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys. Philos Mag 90:177–195CrossRef
32.
go back to reference James RD, Hane KF (2000) Martensitic transformations and shape-memory materials. Acta Mater 48:197–222CrossRef James RD, Hane KF (2000) Martensitic transformations and shape-memory materials. Acta Mater 48:197–222CrossRef
33.
go back to reference Zarnetta R, Takahashi R, Young ML, Savan A, Furuya Y, Thienhaus S et al (2010) Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv Funct Mater 20:1917–1923CrossRef Zarnetta R, Takahashi R, Young ML, Savan A, Furuya Y, Thienhaus S et al (2010) Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv Funct Mater 20:1917–1923CrossRef
34.
go back to reference Zhang ZY, James RD, Muller S (2009) Energy barriers and hysteresis in martensitic phase transformations. Acta Mater 57:4332–4352CrossRef Zhang ZY, James RD, Muller S (2009) Energy barriers and hysteresis in martensitic phase transformations. Acta Mater 57:4332–4352CrossRef
35.
go back to reference Bhattacharya K, Conti S, Zanzotto G, Zimmer J (2004) Crystal symmetry and the reversibility of martensitic transformations. Nature 428:55–59CrossRef Bhattacharya K, Conti S, Zanzotto G, Zimmer J (2004) Crystal symmetry and the reversibility of martensitic transformations. Nature 428:55–59CrossRef
36.
go back to reference Lexcellent C, Blanc P, Creton N (2008) Two ways for predicting the hysteresis minimisation for shape memory alloys. Mater Sci Eng A 481–482:334–338CrossRef Lexcellent C, Blanc P, Creton N (2008) Two ways for predicting the hysteresis minimisation for shape memory alloys. Mater Sci Eng A 481–482:334–338CrossRef
37.
go back to reference Bhattacharya K (1993) Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Contin Mech Thermodyn 5:205–242CrossRef Bhattacharya K (1993) Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Contin Mech Thermodyn 5:205–242CrossRef
38.
go back to reference Hane KF, Shield TW (1999) Microstructure in the cubic to monoclinic transition in titanium-nickel shape memory alloys. Acta Mater 47:2603–2617CrossRef Hane KF, Shield TW (1999) Microstructure in the cubic to monoclinic transition in titanium-nickel shape memory alloys. Acta Mater 47:2603–2617CrossRef
39.
go back to reference Dalle F, Perrin E, Vermaut P, Masse M, Portier R (2002) Interface mobility in Ni49.8Ti42.2Hf8 shape memory alloy. Acta Mater 50:3557–3565CrossRef Dalle F, Perrin E, Vermaut P, Masse M, Portier R (2002) Interface mobility in Ni49.8Ti42.2Hf8 shape memory alloy. Acta Mater 50:3557–3565CrossRef
40.
go back to reference Liu Y, Xie Z, Van Humbeeck J, Delaey L (1999) Deformation of shape memory alloys associated with twinned domain re-configurations. Mater Sci Eng A 273–275:679–684CrossRef Liu Y, Xie Z, Van Humbeeck J, Delaey L (1999) Deformation of shape memory alloys associated with twinned domain re-configurations. Mater Sci Eng A 273–275:679–684CrossRef
41.
go back to reference Stebner AP, Vogel SC, Noebe RD, Sisneros TA, Clausen B, Brown DW et al (2013) Micromechanical quantification of elastic, twinning, and slip strain partitioning exhibited by polycrystalline, monoclinic nickel–titanium during large uniaxial deformations measured via in situ neutron diffraction. J Mech Phys Solids 61:2302–2330CrossRef Stebner AP, Vogel SC, Noebe RD, Sisneros TA, Clausen B, Brown DW et al (2013) Micromechanical quantification of elastic, twinning, and slip strain partitioning exhibited by polycrystalline, monoclinic nickel–titanium during large uniaxial deformations measured via in situ neutron diffraction. J Mech Phys Solids 61:2302–2330CrossRef
42.
go back to reference Meng XL, Cai W, Fu YD, Zhang JX, Zhao LC (2010) Martensite structure in Ti–Ni–Hf–Cu quaternary alloy ribbons containing (Ti, Hf)2Ni precipitates. Acta Mater 58:3751–3763CrossRef Meng XL, Cai W, Fu YD, Zhang JX, Zhao LC (2010) Martensite structure in Ti–Ni–Hf–Cu quaternary alloy ribbons containing (Ti, Hf)2Ni precipitates. Acta Mater 58:3751–3763CrossRef
43.
go back to reference Contardo L, Guénin G (1990) Training and two way memory effect in Cu–Zn–Al alloy. Acta Metall Mater 38:1267–1272CrossRef Contardo L, Guénin G (1990) Training and two way memory effect in Cu–Zn–Al alloy. Acta Metall Mater 38:1267–1272CrossRef
44.
go back to reference Liu Y, McCormick PG (1990) Factors influencing the development of two-way shape memory in NiTi. Acta Metall Mater 38:1321–1326CrossRef Liu Y, McCormick PG (1990) Factors influencing the development of two-way shape memory in NiTi. Acta Metall Mater 38:1321–1326CrossRef
45.
go back to reference Nagasawa A, Enami K, Ishino Y, Abe Y, Nenno S (1974) Reversible shape memory effect. Scr Metall 8:1055–1060CrossRef Nagasawa A, Enami K, Ishino Y, Abe Y, Nenno S (1974) Reversible shape memory effect. Scr Metall 8:1055–1060CrossRef
46.
go back to reference Perkins J, Sponholz R (1984) Stress-Induced Martensitic Transformation Cycling and Two-Way Shape Memory Training in Cu-Zn-Al Alloys. Metallurgical and Materials Transactions A 15:313–321CrossRef Perkins J, Sponholz R (1984) Stress-Induced Martensitic Transformation Cycling and Two-Way Shape Memory Training in Cu-Zn-Al Alloys. Metallurgical and Materials Transactions A 15:313–321CrossRef
47.
go back to reference Benafan O, Padula SA II, Noebe RD, Sisneros TA, Vaidyanathan R (2012) Role of B19′ martensite deformation in stabilizing two-way shape memory behavior in NiTi. J Appl Phys 112:093510CrossRef Benafan O, Padula SA II, Noebe RD, Sisneros TA, Vaidyanathan R (2012) Role of B19′ martensite deformation in stabilizing two-way shape memory behavior in NiTi. J Appl Phys 112:093510CrossRef
48.
go back to reference Grummon D (2003) Thin-film shape-memory materials for high-temperature applications. JOM 55:24–32CrossRef Grummon D (2003) Thin-film shape-memory materials for high-temperature applications. JOM 55:24–32CrossRef
49.
go back to reference Noebe R, Gaydosh D, II SP, Garg A, Biles T, Nathal M. (2005) Properties and potential of two (Ni, Pt)Ti alloys for use as high-temperature actuator materials. SPIE Conf Proc 5761:364–375 Noebe R, Gaydosh D, II SP, Garg A, Biles T, Nathal M. (2005) Properties and potential of two (Ni, Pt)Ti alloys for use as high-temperature actuator materials. SPIE Conf Proc 5761:364–375
50.
go back to reference Bigelow G, Padula S, Garg A, Gaydosh D, Noebe R (2010) Characterization of ternary NiTiPd High-temperature shape-memory alloys under load-biased thermal cycling. Metall Mater Trans A 41:3065–3079CrossRef Bigelow G, Padula S, Garg A, Gaydosh D, Noebe R (2010) Characterization of ternary NiTiPd High-temperature shape-memory alloys under load-biased thermal cycling. Metall Mater Trans A 41:3065–3079CrossRef
Metadata
Title
Compressive response of Ni45.3Ti34.7Hf15Pd5 and Ni45.3Ti29.7Hf20Pd5 shape-memory alloys
Authors
E. Acar
H. Tobe
I. Kaya
H. E. Karaca
Y. I. Chumlyakov
Publication date
01-02-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 4/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8757-3

Other articles of this Issue 4/2015

Journal of Materials Science 4/2015 Go to the issue

Premium Partners