Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 1/2022

14-07-2021 | Research Article-Physics

Computational Solutions of Fractional (2 + 1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation Using an Analytic Method and Application

Authors: Aniqa Zulfiqar, Jamshad Ahmad

Published in: Arabian Journal for Science and Engineering | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, an efficient \((G^{\prime}/G,\,1/G)\)-expansion method is adopted to resolve a famous (2 + 1)-dimensional fractional Ablowitz–Kaup–Newell–Segur (AKNS) water wave equation for the non-conservative system that plays a significant role in understanding the wave propagation. This work addresses the physical and dynamic behavior of some new exact trigonometric, hyperbolic, and rational solitary wave solutions in the form of 3D-plots and contour plots using different measures of parameters. The obtained results show the efficiency of the proposed method for the analytical treatment of nonlinear problems in mathematics, science and engineering and may be helpful in better understanding the propagating wave dynamics in diverse situations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer (2011) Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer (2011)
3.
go back to reference El-Nabulsi, R.A.: Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Stat. Phys. 172(6), 1617–1640 (2018)MathSciNetCrossRef El-Nabulsi, R.A.: Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Stat. Phys. 172(6), 1617–1640 (2018)MathSciNetCrossRef
4.
go back to reference Dong, J.; Xu, M.: Space–time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl. 344(2), 1005–1017 (2008)MathSciNetCrossRef Dong, J.; Xu, M.: Space–time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl. 344(2), 1005–1017 (2008)MathSciNetCrossRef
5.
go back to reference El-Nabulsi, R.A.: Emergence of quasiperiodic quantum wave functions in Hausdorff dimensional crystals and improved intrinsic Carrier concentrations. J. Phys. Chem. Solids 127, 224–230 (2019)CrossRef El-Nabulsi, R.A.: Emergence of quasiperiodic quantum wave functions in Hausdorff dimensional crystals and improved intrinsic Carrier concentrations. J. Phys. Chem. Solids 127, 224–230 (2019)CrossRef
6.
go back to reference Acan, O.; Al Qurashi, M.M.; Baleanu, D.: Reduced differential transform method for solving time and space local fractional partial differential equations. J. Nonlinear Sci. Appl. 10(10), 5230–5238 (2017)MathSciNetCrossRef Acan, O.; Al Qurashi, M.M.; Baleanu, D.: Reduced differential transform method for solving time and space local fractional partial differential equations. J. Nonlinear Sci. Appl. 10(10), 5230–5238 (2017)MathSciNetCrossRef
7.
go back to reference Acan, O.; Baleanu, D.; Qurashi, M.M.A.; Sakar, M.G.: Analytical approximate solutions of (n + 1)-dimensional fractal heat-like and wave-like equations. Entropy 19(7), 296 (2017)CrossRef Acan, O.; Baleanu, D.; Qurashi, M.M.A.; Sakar, M.G.: Analytical approximate solutions of (n + 1)-dimensional fractal heat-like and wave-like equations. Entropy 19(7), 296 (2017)CrossRef
8.
go back to reference Zulfiqar, A.; Ahmad, J.: Soliton solutions of fractional modified unstable Schrödinger equation using exp-function method. Results Phys 19, 103476 (2020)CrossRef Zulfiqar, A.; Ahmad, J.: Soliton solutions of fractional modified unstable Schrödinger equation using exp-function method. Results Phys 19, 103476 (2020)CrossRef
9.
go back to reference Zulfiqar, A.; Ahmad, J.: Exact solitary wave solutions of fractional modified Camassa–Holm equation using an efficient method. Alex. Eng. J. 59(5), 3565–3574 (2020)CrossRef Zulfiqar, A.; Ahmad, J.: Exact solitary wave solutions of fractional modified Camassa–Holm equation using an efficient method. Alex. Eng. J. 59(5), 3565–3574 (2020)CrossRef
10.
go back to reference He, J.H.: Variational iteration method—a kind of non-linear analytical technique: some examples. Int J Nonlinear Mech 4, 699–708 (1999)CrossRef He, J.H.: Variational iteration method—a kind of non-linear analytical technique: some examples. Int J Nonlinear Mech 4, 699–708 (1999)CrossRef
11.
go back to reference Wazwaz, A.M.: A sine–cosine method for handling non-linear wave equations. Math. Compt. Model. 40(5), 499–508 (2004)CrossRef Wazwaz, A.M.: A sine–cosine method for handling non-linear wave equations. Math. Compt. Model. 40(5), 499–508 (2004)CrossRef
12.
go back to reference Akbar, M.A.; Norhashidah, M.; Islam, M.T.: Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Math. 4(3), 397–411 (2019)MathSciNetCrossRef Akbar, M.A.; Norhashidah, M.; Islam, M.T.: Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Math. 4(3), 397–411 (2019)MathSciNetCrossRef
13.
go back to reference Wazwaz, A.M.: Adomian decomposition method for a reliable treatment of the Emden–Fowler equation. App. Math. Compt 161, 543–560 (2005)MathSciNetCrossRef Wazwaz, A.M.: Adomian decomposition method for a reliable treatment of the Emden–Fowler equation. App. Math. Compt 161, 543–560 (2005)MathSciNetCrossRef
14.
go back to reference Liu, T.: Exact solutions to time-fractional fifth order KdV equation by trial equation method based on symmetry. Symmetry 11(6), 742 (2019)CrossRef Liu, T.: Exact solutions to time-fractional fifth order KdV equation by trial equation method based on symmetry. Symmetry 11(6), 742 (2019)CrossRef
15.
go back to reference Tang, B.; He, Y.; Wei, L.; Zhang, X.: A generalized fractional sub-equation method for fractional differential equations with variable coefficients. Phys. Lett. A 376(38–39), 2588–2590 (2012)MathSciNetCrossRef Tang, B.; He, Y.; Wei, L.; Zhang, X.: A generalized fractional sub-equation method for fractional differential equations with variable coefficients. Phys. Lett. A 376(38–39), 2588–2590 (2012)MathSciNetCrossRef
16.
go back to reference Pandir, Y.; Duzgun, H.H.: New exact solutions of time fractional Gardner equation by using new version of F-expansion method. Commun. Theor. Phys. 67(1), 9 (2017)CrossRef Pandir, Y.; Duzgun, H.H.: New exact solutions of time fractional Gardner equation by using new version of F-expansion method. Commun. Theor. Phys. 67(1), 9 (2017)CrossRef
17.
go back to reference Dong, S.H.: Wave Equations in Higher Dimensions. Springer, Netherlands (2011)CrossRef Dong, S.H.: Wave Equations in Higher Dimensions. Springer, Netherlands (2011)CrossRef
18.
go back to reference Li, L.X.; Li, E.Q.; Wang, M.L.: The (G′/G, 1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations. Appl. Math.—J. Chin. Univ. 25(4), 454–462 (2010)MathSciNetCrossRef Li, L.X.; Li, E.Q.; Wang, M.L.: The (G′/G, 1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations. Appl. Math.—J. Chin. Univ. 25(4), 454–462 (2010)MathSciNetCrossRef
19.
go back to reference Zayed, E.M.E.; Abdelaziz, M.A.M.: The two-variable (G′/G, 1/G)-expansion method for solving the nonlinear KdV–mKdV equation. Math. Probl. Eng. 2012, 725061 (2012)MathSciNetCrossRef Zayed, E.M.E.; Abdelaziz, M.A.M.: The two-variable (G′/G, 1/G)-expansion method for solving the nonlinear KdV–mKdV equation. Math. Probl. Eng. 2012, 725061 (2012)MathSciNetCrossRef
20.
go back to reference Zayed, E.M.E.; Alurrfi, K.A.E.: The (G′/G, 1/G)–expansion method and its applications to two nonlinear Schrödinger equations describing the propagation of femtosecond pulses in nonlinear optical fibers. Optik 127(4), 1581–1589 (2016)CrossRef Zayed, E.M.E.; Alurrfi, K.A.E.: The (G′/G, 1/G)–expansion method and its applications to two nonlinear Schrödinger equations describing the propagation of femtosecond pulses in nonlinear optical fibers. Optik 127(4), 1581–1589 (2016)CrossRef
21.
go back to reference Uddin, M.H.; Akbar, M.A.; Khan, M.A.; Haque, M.A.: Families of exact traveling wave solutions to the space time fractional modified KdV equation and the fractional Kolmogorov–Petrovskii–Piskunovequation. J. Mech. Contin. Math. Sci. 13(1), 17–33 (2018) Uddin, M.H.; Akbar, M.A.; Khan, M.A.; Haque, M.A.: Families of exact traveling wave solutions to the space time fractional modified KdV equation and the fractional Kolmogorov–Petrovskii–Piskunovequation. J. Mech. Contin. Math. Sci. 13(1), 17–33 (2018)
23.
go back to reference López, R.C.; Sun, G.H.; Camacho-Nieto, O.; Yáñez-Márquez, C.; Dong, S.H.: Analytical traveling-wave solutions to a generalized Gross–Pitaevskii equation with some new time and space varying nonlinearity coefficients and external fields. Phys. Lett. A 381(35), 2978–2985 (2017)CrossRef López, R.C.; Sun, G.H.; Camacho-Nieto, O.; Yáñez-Márquez, C.; Dong, S.H.: Analytical traveling-wave solutions to a generalized Gross–Pitaevskii equation with some new time and space varying nonlinearity coefficients and external fields. Phys. Lett. A 381(35), 2978–2985 (2017)CrossRef
24.
go back to reference Shabat, A.; Zakharov, V.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Phys. JETP 34(1), 62 (1972)MathSciNet Shabat, A.; Zakharov, V.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Phys. JETP 34(1), 62 (1972)MathSciNet
25.
go back to reference Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31(2), 125 (1973)MathSciNetCrossRef Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31(2), 125 (1973)MathSciNetCrossRef
26.
go back to reference Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53(4), 249–315 (1974)MathSciNetCrossRef Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53(4), 249–315 (1974)MathSciNetCrossRef
27.
go back to reference Rogers, C.; Rogers, C.; Schief, W.K.: Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Vol. 30. Cambridge University Press (2002)CrossRef Rogers, C.; Rogers, C.; Schief, W.K.: Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Vol. 30. Cambridge University Press (2002)CrossRef
28.
go back to reference Guo, B.; Ling, L.; Liu, Q.P.: Nonlinear Schrödinger Equation: Generalized Darboux Transformation and Rogue Wave Solutions. Phys. Rev. E 85(2), 026607 (2012)CrossRef Guo, B.; Ling, L.; Liu, Q.P.: Nonlinear Schrödinger Equation: Generalized Darboux Transformation and Rogue Wave Solutions. Phys. Rev. E 85(2), 026607 (2012)CrossRef
29.
go back to reference Helal, M.A.; Seadawy, A.R.; Zekry, M.H.: Stability analysis solutions for the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur water wave equation. Appl. Math. Sci. 7(65–68), 3355–3365 (2013)MathSciNet Helal, M.A.; Seadawy, A.R.; Zekry, M.H.: Stability analysis solutions for the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur water wave equation. Appl. Math. Sci. 7(65–68), 3355–3365 (2013)MathSciNet
30.
go back to reference Matveev, V.B.; Smirnov, A.O.: Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: a unified approach. Theor. Math. Phys. 186(2), 156–182 (2016)MathSciNetCrossRef Matveev, V.B.; Smirnov, A.O.: Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: a unified approach. Theor. Math. Phys. 186(2), 156–182 (2016)MathSciNetCrossRef
31.
go back to reference Cheng, Z.L.; Hao, X.H.: The periodic wave solutions for a (2 + 1)-dimensional AKNS equation. Appl. Math. Comput. 234, 118–126 (2014)MathSciNetMATH Cheng, Z.L.; Hao, X.H.: The periodic wave solutions for a (2 + 1)-dimensional AKNS equation. Appl. Math. Comput. 234, 118–126 (2014)MathSciNetMATH
32.
go back to reference Ali, A.; Seadawy, A.R.; Lu, D.: Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur water wave dynamical equation via two methods and its applications. Open Phys. 16(1), 219–226 (2018)CrossRef Ali, A.; Seadawy, A.R.; Lu, D.: Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur water wave dynamical equation via two methods and its applications. Open Phys. 16(1), 219–226 (2018)CrossRef
33.
go back to reference Yaslan, H.C.; Girgin, A.: New exact solutions for the conformable space-time fractional KdV, CDG, (2 + 1)-dimensional CBS and (2 + 1)-dimensional AKNS equations. J. Taibah Univ. Sci. 13(1), 1–8 (2018)CrossRef Yaslan, H.C.; Girgin, A.: New exact solutions for the conformable space-time fractional KdV, CDG, (2 + 1)-dimensional CBS and (2 + 1)-dimensional AKNS equations. J. Taibah Univ. Sci. 13(1), 1–8 (2018)CrossRef
34.
go back to reference Ferdous, F.; Hafez, M.G.: Oblique closed form solutions of some important fractional evolution equations via the modified Kudryashov method arising in physical problems. J. Ocean Eng. Sci. 3(3), 244–252 (2018)CrossRef Ferdous, F.; Hafez, M.G.: Oblique closed form solutions of some important fractional evolution equations via the modified Kudryashov method arising in physical problems. J. Ocean Eng. Sci. 3(3), 244–252 (2018)CrossRef
35.
go back to reference Gao, W.; Yel, G.; Baskonus, H.M.; Cattani, C.: Complex solitons in the conformable (2 + 1)-dimensional Ablowitz–Kaup–Newell–Segur equation. Aims Math. 5(1), 507–521 (2020)MathSciNetCrossRef Gao, W.; Yel, G.; Baskonus, H.M.; Cattani, C.: Complex solitons in the conformable (2 + 1)-dimensional Ablowitz–Kaup–Newell–Segur equation. Aims Math. 5(1), 507–521 (2020)MathSciNetCrossRef
36.
go back to reference Arbabi, S.; Najafi, M.; Najafi, M.: New soliton solutions of dissipative (2 + 1)-dimensional AKNS equation. IJAMS 1, 98–103 (2013)MATH Arbabi, S.; Najafi, M.; Najafi, M.: New soliton solutions of dissipative (2 + 1)-dimensional AKNS equation. IJAMS 1, 98–103 (2013)MATH
37.
go back to reference Inan, I.E.; Duran, S.; Uğurlu, Y.: TAN (F(ξ/2))-expansion method for traveling wave solutions of AKNS and Burgers-like equations. Optik 138, 15–20 (2017)CrossRef Inan, I.E.; Duran, S.; Uğurlu, Y.: TAN (F(ξ/2))-expansion method for traveling wave solutions of AKNS and Burgers-like equations. Optik 138, 15–20 (2017)CrossRef
38.
go back to reference Güner, Ö.; Bekir, A.; Karaca, F.: Optical soliton solutions of nonlinear evolution equations using ansatz method. Optik 127(1), 131–134 (2016)CrossRef Güner, Ö.; Bekir, A.; Karaca, F.: Optical soliton solutions of nonlinear evolution equations using ansatz method. Optik 127(1), 131–134 (2016)CrossRef
39.
go back to reference Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of non-differentiable functions further results. Comput. Math. Appl. 51, 1367–1376 (2006)MathSciNetCrossRef Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of non-differentiable functions further results. Comput. Math. Appl. 51, 1367–1376 (2006)MathSciNetCrossRef
Metadata
Title
Computational Solutions of Fractional (2 + 1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation Using an Analytic Method and Application
Authors
Aniqa Zulfiqar
Jamshad Ahmad
Publication date
14-07-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 1/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05917-9

Other articles of this Issue 1/2022

Arabian Journal for Science and Engineering 1/2022 Go to the issue

Premium Partners