Skip to main content
Top

2011 | OriginalPaper | Chapter

3. Computational Techniques for Biological Fluids: From Blood Vessel Scale to Blood Cells

Authors : Fotis Sotiropoulos, Cyrus Aidun, Iman Borazjani, Robert MacMeccan

Published in: Image-Based Computational Modeling of the Human Circulatory and Pulmonary Systems

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Simulation of flows in the cardiovascular system faces many challenges. Chief among these is the issue of treatment of blood flow at disparate scales. For blood flows through large vessels a Newtonian homogeneous fluid model can be adequate, while in the capillaries and in orifices and constrictions individual blood cells and interactions among blood cells assume importance. Another important feature of flows in the cardiovascular system or in the presence of cardiovascular prostheses is the interaction of blood with moving boundaries (e.g. arterial walls, heart, heart valves, and ventricular assist devices). Computational fluid dynamics has made significant progress in tackling these challenges to the extent that it is now feasible to calculate flows through parts of the cardiovascular system with a great degree of fidelity and physiological realism. This chapter presents fundamental aspects of the demands on and capabilities of numerical solution techniques for solving a variety of blood flow phenomena. Large scale flows with significant fluid inertia and small scale flows with individual blood cells are covered. Applications of the methods and sample results are shown to illustrate the state-of-the-art of computations in cardiovascular biofluid dynamics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng 36:276–297 Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann Biomed Eng 36:276–297
3.
go back to reference Bagchi P, Johnson P, Popel A (2005) Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. J Biomech Eng 127:1070–1080 Bagchi P, Johnson P, Popel A (2005) Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. J Biomech Eng 127:1070–1080
4.
go back to reference Baskurt OK, Meiselman HJ (2003) Blood rheology and hemodynamics. Semin Thromb Hemost 29:435–450 Baskurt OK, Meiselman HJ (2003) Blood rheology and hemodynamics. Semin Thromb Hemost 29:435–450
5.
go back to reference Merrill E, Cokelet G, Britten A, Wells R (1963) Non-Newtonian rheology of human blood – effect of fibrinogen deduced by “subtraction”. Circ Res 13:48–55 Merrill E, Cokelet G, Britten A, Wells R (1963) Non-Newtonian rheology of human blood – effect of fibrinogen deduced by “subtraction”. Circ Res 13:48–55
6.
go back to reference Owens RG (2006) A new microstructure-based constitutive model for human blood. J Non-Newton Fluid Mech 140:57–70MATH Owens RG (2006) A new microstructure-based constitutive model for human blood. J Non-Newton Fluid Mech 140:57–70MATH
7.
go back to reference Sequeira A, Janela J (2007) An overview of some mathematical models of blood rheology. In: Pereira MS (ed) A portrait of state-of-the-art research at the Technical University of Lisbon. Springer, Dordrecht, pp 65 Sequeira A, Janela J (2007) An overview of some mathematical models of blood rheology. In: Pereira MS (ed) A portrait of state-of-the-art research at the Technical University of Lisbon. Springer, Dordrecht, pp 65
8.
go back to reference Goldstein H, Poole CP, Safko JL (2002) Classical mechanics. Addison-Wesley, San Francisco, CA Goldstein H, Poole CP, Safko JL (2002) Classical mechanics. Addison-Wesley, San Francisco, CA
9.
go back to reference Hoag D (1963) Apollo guidance and navigation, considerations of Apollo IMU Gimbal Lock. In: MIT Instrumentation Laboratory Document E-1344, MIT Hoag D (1963) Apollo guidance and navigation, considerations of Apollo IMU Gimbal Lock. In: MIT Instrumentation Laboratory Document E-1344, MIT
10.
go back to reference Hughes PC (1986) Spacecraft attitude dynamics. Wiley, New York, NY Hughes PC (1986) Spacecraft attitude dynamics. Wiley, New York, NY
11.
go back to reference Bathe K-J (2003) Finite element procedures. Prentice Hall, Englewood Cliffs, NJ Bathe K-J (2003) Finite element procedures. Prentice Hall, Englewood Cliffs, NJ
12.
go back to reference Cowin SC, Doty SB (2007) Tissue mechanics. Springer, New York, NYMATH Cowin SC, Doty SB (2007) Tissue mechanics. Springer, New York, NYMATH
13.
go back to reference Vito RP, Dixon SA (2003) Blood vessel constitutive models?1995–2002. Ann Rev Biomed Eng 5:413–439 Vito RP, Dixon SA (2003) Blood vessel constitutive models?1995–2002. Ann Rev Biomed Eng 5:413–439
14.
go back to reference Kim H, Lu J, Sacks MS, Chandran KB (2008) Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann Biomed Eng 36:262–275 Kim H, Lu J, Sacks MS, Chandran KB (2008) Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann Biomed Eng 36:262–275
15.
go back to reference Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions. Comput Methods Appl Mech Eng 33:689–723MATH Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions. Comput Methods Appl Mech Eng 33:689–723MATH
16.
go back to reference Morton SA, Melville RB, Visbal MR (1997) Accuracy and coupling issues of aeroelastic Navier–Stokes solutions on deforming meshes. AIAA paper 97-1085 Morton SA, Melville RB, Visbal MR (1997) Accuracy and coupling issues of aeroelastic Navier–Stokes solutions on deforming meshes. AIAA paper 97-1085
17.
go back to reference Vinokur M (1989) An analysis of finite-difference and finite-volume formulations of conservation-laws. J Comput Phys 81:1MATHMathSciNet Vinokur M (1989) An analysis of finite-difference and finite-volume formulations of conservation-laws. J Comput Phys 81:1MATHMathSciNet
18.
go back to reference Warsi ZUA (2006) Fluid dynamics: theoretical and computational approaches. CRC Press, Boca Raton, FL Warsi ZUA (2006) Fluid dynamics: theoretical and computational approaches. CRC Press, Boca Raton, FL
19.
go back to reference Yang Z, Mavriplis D (2006) Higher-order time integration schemes for aeroelastic applications on unstructured meshes. AIAA paper 2006-441 Yang Z, Mavriplis D (2006) Higher-order time integration schemes for aeroelastic applications on unstructured meshes. AIAA paper 2006-441
20.
go back to reference Taylor CA, Hughes TJR, Zarins CK (1998a) Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng 158:155–196MATHMathSciNet Taylor CA, Hughes TJR, Zarins CK (1998a) Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng 158:155–196MATHMathSciNet
21.
go back to reference Taylor CA, Hughes TJR, Zarins CK (1998b) Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann Biomed Eng 26: 975–987 Taylor CA, Hughes TJR, Zarins CK (1998b) Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann Biomed Eng 26: 975–987
22.
go back to reference Qiu Y, Tarbell JM (2000) Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. J Biomech Eng 122:77 Qiu Y, Tarbell JM (2000) Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. J Biomech Eng 122:77
23.
go back to reference Jin S, Oshinski J, Giddens DP (2003) Effects of wall motion and compliance on flow patterns in the ascending aorta. J Biomech Eng 125:347 Jin S, Oshinski J, Giddens DP (2003) Effects of wall motion and compliance on flow patterns in the ascending aorta. J Biomech Eng 125:347
24.
go back to reference Perktold K, Hofer M, Rappitsch G, Loew M, Kuban BD, Freidman MH (1998) Validated computation of physiologic flow in a realistic coronary artery branch. J Biomech 31:217–228 Perktold K, Hofer M, Rappitsch G, Loew M, Kuban BD, Freidman MH (1998) Validated computation of physiologic flow in a realistic coronary artery branch. J Biomech 31:217–228
25.
go back to reference Fernandez MA, Moubachir M (2005) A Newton method using exact Jacobians for solving fluid–structure coupling. Comput Struct 83:127–142 Fernandez MA, Moubachir M (2005) A Newton method using exact Jacobians for solving fluid–structure coupling. Comput Struct 83:127–142
26.
go back to reference Cheng R, Lai YG, Chandran KB (2004) Three-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann Biomed Eng 32:1471 Cheng R, Lai YG, Chandran KB (2004) Three-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann Biomed Eng 32:1471
27.
go back to reference Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Meth Appl Mech Eng 195:5685–5706MATHMathSciNet Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Meth Appl Mech Eng 195:5685–5706MATHMathSciNet
28.
go back to reference Taylor CA, Humphrey JD (2009) Open problems in computational vascular biomechanics: hemodynamics and arterial wall mechanics. Comput Methods Appl Mech Eng 198: 3514–3523MATHMathSciNet Taylor CA, Humphrey JD (2009) Open problems in computational vascular biomechanics: hemodynamics and arterial wall mechanics. Comput Methods Appl Mech Eng 198: 3514–3523MATHMathSciNet
29.
go back to reference Borazjani I (2008) Numerical simulations of fluid–structure interaction problems in biological flows. PhD thesis, University of Minnesota, Twin Cities. Borazjani I (2008) Numerical simulations of fluid–structure interaction problems in biological flows. PhD thesis, University of Minnesota, Twin Cities.
30.
go back to reference Kim D, Choi H (2006) Immersed boundary method for flow around an arbitrarily moving body. J Comput Phys 212:662MATHMathSciNet Kim D, Choi H (2006) Immersed boundary method for flow around an arbitrarily moving body. J Comput Phys 212:662MATHMathSciNet
31.
go back to reference Beddhu M, Taylor LK, Whitfield DL (1996) Strong conservative form of the incompressible Navier–Stokes equations in a rotating frame with a solution procedure. J Comput Phys 128:427–437MATH Beddhu M, Taylor LK, Whitfield DL (1996) Strong conservative form of the incompressible Navier–Stokes equations in a rotating frame with a solution procedure. J Comput Phys 128:427–437MATH
32.
go back to reference Dutsch H, Durst F, Becker S, Lienhart H (1998) Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan–Carpenter numbers. J Fluid Mech 360:249–271 Dutsch H, Durst F, Becker S, Lienhart H (1998) Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan–Carpenter numbers. J Fluid Mech 360:249–271
33.
go back to reference Borazjani I, Sotiropoulos F (2009) Why don’t mackerels swim like eels? The role of form and kinematics on the hydrodynamics of undulatory swimming. Phys Fluids 21:091109 Borazjani I, Sotiropoulos F (2009) Why don’t mackerels swim like eels? The role of form and kinematics on the hydrodynamics of undulatory swimming. Phys Fluids 21:091109
34.
go back to reference Borazjani I, Sotiropoulos F (2010) On the role of form and kinematics on the hydrodynamics of body/caudal fin swimming. J Exp Biol 213:89–107 Borazjani I, Sotiropoulos F (2010) On the role of form and kinematics on the hydrodynamics of body/caudal fin swimming. J Exp Biol 213:89–107
35.
go back to reference Vyšohlíd M, Mahesh K (2006) Large eddy simulation of crashback in marine propellers. AIAA paper 1415 Vyšohlíd M, Mahesh K (2006) Large eddy simulation of crashback in marine propellers. AIAA paper 1415
36.
go back to reference Borazjani I, Ge L, Sotiropoulos F (2008) Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J Comput Phys 227:7587–7620MATHMathSciNet Borazjani I, Ge L, Sotiropoulos F (2008) Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J Comput Phys 227:7587–7620MATHMathSciNet
37.
go back to reference Dasi LP, Ge L, Simon HA, Sotiropoulos F, Yoganathan AP (2007) Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys Fluids 19:067105 Dasi LP, Ge L, Simon HA, Sotiropoulos F, Yoganathan AP (2007) Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys Fluids 19:067105
38.
go back to reference Grigioni M, Daniele C, Del Gaudio C, Morbiducci U, Balducci A, D’Avenio G, Barbaro V (2005) Three-dimensional numeric simulation of flow through an aortic bileaflet valve in a realistic model of aortic root. ASAIO J 51:176 Grigioni M, Daniele C, Del Gaudio C, Morbiducci U, Balducci A, D’Avenio G, Barbaro V (2005) Three-dimensional numeric simulation of flow through an aortic bileaflet valve in a realistic model of aortic root. ASAIO J 51:176
39.
40.
41.
go back to reference Viecelli JA (1969) A method for including arbitrary external boundaries in the MAC incompressible fluid computing technique. J Comput Phys 4:543–551MATH Viecelli JA (1969) A method for including arbitrary external boundaries in the MAC incompressible fluid computing technique. J Comput Phys 4:543–551MATH
42.
go back to reference Viecelli JA (1971) A computing method for incompressible flows bounded by moving walls. J Comput Phys 8:119–143MATH Viecelli JA (1971) A computing method for incompressible flows bounded by moving walls. J Comput Phys 8:119–143MATH
44.
go back to reference Peskin CS, McQueen DM (1980) Modeling prosthetic heart valves for numerical analysis of blood flow in the heart. J Comput Phys 37:113–132MATHMathSciNet Peskin CS, McQueen DM (1980) Modeling prosthetic heart valves for numerical analysis of blood flow in the heart. J Comput Phys 37:113–132MATHMathSciNet
45.
go back to reference Peskin CS, McQueen DM (1989) A three-dimensional computational method for blood flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid. J Comput Phys 81:372–405MATHMathSciNet Peskin CS, McQueen DM (1989) A three-dimensional computational method for blood flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid. J Comput Phys 81:372–405MATHMathSciNet
46.
go back to reference Griffith BE, Hornung RD, McQueen DM, Peskin CS (2007) An adaptive, formally second order accurate version of the immersed boundary method. J Comput Phys 223:10–49MATHMathSciNet Griffith BE, Hornung RD, McQueen DM, Peskin CS (2007) An adaptive, formally second order accurate version of the immersed boundary method. J Comput Phys 223:10–49MATHMathSciNet
47.
go back to reference Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiphas Flow 25:755–794MATH Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiphas Flow 25:755–794MATH
48.
go back to reference De Hart J, Baaijens FPT, Peters GWM, Schreurs PJG (2003a) A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech 36:699–712 De Hart J, Baaijens FPT, Peters GWM, Schreurs PJG (2003a) A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech 36:699–712
49.
go back to reference De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2000) A two-dimensional fluid–structure interaction model of the aortic value. J Biomech 33:1079–1088 De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2000) A two-dimensional fluid–structure interaction model of the aortic value. J Biomech 33:1079–1088
50.
go back to reference De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2003b) A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. J Biomech 36:103–112 De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2003b) A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. J Biomech 36:103–112
51.
go back to reference De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2004) Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J Biomech 37:303–311 De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2004) Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J Biomech 37:303–311
52.
go back to reference van Loon R, Anderson PD, Baaijens FPT, van de Vosse FN (2005) A three-dimensional fluid–structure interaction method for heart valve modelling. Comptes Rendus-Mecanique 333:856–866MATH van Loon R, Anderson PD, Baaijens FPT, van de Vosse FN (2005) A three-dimensional fluid–structure interaction method for heart valve modelling. Comptes Rendus-Mecanique 333:856–866MATH
53.
go back to reference van Loon R, Anderson PD, de Hart J, Baaijens FPT (2004) A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves. Int J Numerical Methods Fluids 46:533MATH van Loon R, Anderson PD, de Hart J, Baaijens FPT (2004) A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves. Int J Numerical Methods Fluids 46:533MATH
54.
go back to reference van Loon R, Anderson PD, van de Vosse FN (2006) A fluid–structure interaction method with solid-rigid contact for heart valve dynamics. J Comput Phys 217:806MATHMathSciNet van Loon R, Anderson PD, van de Vosse FN (2006) A fluid–structure interaction method with solid-rigid contact for heart valve dynamics. J Comput Phys 217:806MATHMathSciNet
55.
go back to reference Choi JI, Oberoi RC, Edwards JR, Rosati JA (2007) An immersed boundary method for complex incompressible flows. J Comput Phys 224:757–784MATHMathSciNet Choi JI, Oberoi RC, Edwards JR, Rosati JA (2007) An immersed boundary method for complex incompressible flows. J Comput Phys 224:757–784MATHMathSciNet
56.
go back to reference Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161:35–60MATHMathSciNet Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161:35–60MATHMathSciNet
57.
go back to reference Ge L, Sotiropoulos F (2007) A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys 225:1782–1809MATHMathSciNet Ge L, Sotiropoulos F (2007) A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys 225:1782–1809MATHMathSciNet
58.
go back to reference Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 207: 457–492MATH Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 207: 457–492MATH
59.
go back to reference Lee L, LeVeque RJ (2003) An immersed interface method for incompressible Navier-Stokes equations. SIAM J Sci Comput 25(3):832–856 Lee L, LeVeque RJ (2003) An immersed interface method for incompressible Navier-Stokes equations. SIAM J Sci Comput 25(3):832–856
60.
go back to reference Tseng YH, Ferziger JH (2003) A ghost-cell immersed boundary method for flow in complex geometry. J Comput Phys 192:593–623MATHMathSciNet Tseng YH, Ferziger JH (2003) A ghost-cell immersed boundary method for flow in complex geometry. J Comput Phys 192:593–623MATHMathSciNet
61.
go back to reference Udaykumar HS, Mittal R, Shyy W (1999) Computation of solid–liquid phase fronts in the sharp interface limit on fixed grids. J Comput Phys 153:535–574MATH Udaykumar HS, Mittal R, Shyy W (1999) Computation of solid–liquid phase fronts in the sharp interface limit on fixed grids. J Comput Phys 153:535–574MATH
62.
go back to reference Leveque RJ, Li Z (1994) The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J Numer Anal 31:1019–1044MATHMathSciNet Leveque RJ, Li Z (1994) The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J Numer Anal 31:1019–1044MATHMathSciNet
63.
go back to reference Mohd-Yosuf J (1997) Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries. In: Annual research briefs, Center for Turbulence Research, Stanford, CA 94305-3035, USA pp 317–328 Mohd-Yosuf J (1997) Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries. In: Annual research briefs, Center for Turbulence Research, Stanford, CA 94305-3035, USA pp 317–328
64.
go back to reference Gilmanov A, Sotiropoulos F, Balaras E (2003) A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids. J Comput Phys 191:660–669MATH Gilmanov A, Sotiropoulos F, Balaras E (2003) A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids. J Comput Phys 191:660–669MATH
65.
go back to reference Mittal R, Iaccarino G (2005) Immersed boundary methods. Ann Rev Fluid Mech 37: 239–261MathSciNet Mittal R, Iaccarino G (2005) Immersed boundary methods. Ann Rev Fluid Mech 37: 239–261MathSciNet
66.
go back to reference Haines E (1994) Point in polygon strategies, Academic Press Graphics Gems Series. Academic, Boston, MA, pp 24–46 Haines E (1994) Point in polygon strategies, Academic Press Graphics Gems Series. Academic, Boston, MA, pp 24–46
67.
go back to reference Yokoi K, Feng X, Hao L, Fukasaku K (2005) Three-dimensional numerical simulation of flows with complex geometries in a regular Cartesian grid and its application to blood flow in cerebral artery with multiple aneurysms. J Comput Phys 202:1MATHMathSciNet Yokoi K, Feng X, Hao L, Fukasaku K (2005) Three-dimensional numerical simulation of flows with complex geometries in a regular Cartesian grid and its application to blood flow in cerebral artery with multiple aneurysms. J Comput Phys 202:1MATHMathSciNet
68.
go back to reference de Zélicourt DA, Ge L, Wang C, Sotiropoulos F, Gilmanova A, Yoganathan A (2009) Flow simulations in arbitrarily complex cardiovascular anatomies – an unstructured Cartesian grid approach. Comput Fluids 38:1749–1762MATH de Zélicourt DA, Ge L, Wang C, Sotiropoulos F, Gilmanova A, Yoganathan A (2009) Flow simulations in arbitrarily complex cardiovascular anatomies – an unstructured Cartesian grid approach. Comput Fluids 38:1749–1762MATH
69.
go back to reference Sundareswaran KS, de Zelicourt D, Sharma S, Kanter KR, Spray TL, Rossignac J, Sotiropoulos F, Fogel MA, Yoganathan AP (2009) Correction of pulmonary arteriovenous malformation using image-based surgical planning. JACC Cardiovasc Imaging 2: 1024–1030 Sundareswaran KS, de Zelicourt D, Sharma S, Kanter KR, Spray TL, Rossignac J, Sotiropoulos F, Fogel MA, Yoganathan AP (2009) Correction of pulmonary arteriovenous malformation using image-based surgical planning. JACC Cardiovasc Imaging 2: 1024–1030
70.
go back to reference Löhner R, Cebral JR, Camelli FE, Appanaboyina S, Baum JD, Mestreau EL, Soto OA (2008) Adaptive embedded and immersed unstructured grid techniques. Comput Methods Appl Mech Eng 197:2173–2197MATH Löhner R, Cebral JR, Camelli FE, Appanaboyina S, Baum JD, Mestreau EL, Soto OA (2008) Adaptive embedded and immersed unstructured grid techniques. Comput Methods Appl Mech Eng 197:2173–2197MATH
71.
go back to reference Appanaboyina S, Mut F, Lohner R, Putman CM, Cebral JR (2008) Computational fluid dynamics of stented intracranial aneurysms using adaptive embedded unstructured grids. Int J Numer Meth Fluids 57(5):475–493MATHMathSciNet Appanaboyina S, Mut F, Lohner R, Putman CM, Cebral JR (2008) Computational fluid dynamics of stented intracranial aneurysms using adaptive embedded unstructured grids. Int J Numer Meth Fluids 57(5):475–493MATHMathSciNet
72.
go back to reference Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190:3247MATH Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190:3247MATH
73.
go back to reference Vierendeels J, Dumont K, Verdonck PR (2008) A partitioned strongly coupled fluid–structure interaction method to model heart valve dynamics. J Comput Appl Math 215:602–609MATHMathSciNet Vierendeels J, Dumont K, Verdonck PR (2008) A partitioned strongly coupled fluid–structure interaction method to model heart valve dynamics. J Comput Appl Math 215:602–609MATHMathSciNet
74.
go back to reference Causin P, Gerbeau JF, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput Meth Appl Mech Eng 194:4506–4527MATHMathSciNet Causin P, Gerbeau JF, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput Meth Appl Mech Eng 194:4506–4527MATHMathSciNet
75.
go back to reference Conca C, Osses A, Planchard J (1997) Added mass and damping in fluid–structure interaction. Comput Methods Appl Mech Eng 146:387–405MATHMathSciNet Conca C, Osses A, Planchard J (1997) Added mass and damping in fluid–structure interaction. Comput Methods Appl Mech Eng 146:387–405MATHMathSciNet
76.
go back to reference Forster C, Wall WA, Ramm E (2007) Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput Methods Appl Mech Eng 196:1278–1293MathSciNet Forster C, Wall WA, Ramm E (2007) Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput Methods Appl Mech Eng 196:1278–1293MathSciNet
77.
go back to reference Aitken AC (1926) On Bernoulli’s numerical solution of algebraic equations. Proc R Soc Edinb 46:289–305MATH Aitken AC (1926) On Bernoulli’s numerical solution of algebraic equations. Proc R Soc Edinb 46:289–305MATH
78.
go back to reference Irons BM, Tuck RC (1969) A version of the Aitken accelerator for computer iteration. Int J Numer Methods Eng 1:275–277MATH Irons BM, Tuck RC (1969) A version of the Aitken accelerator for computer iteration. Int J Numer Methods Eng 1:275–277MATH
79.
go back to reference Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856MATHMathSciNet Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856MATHMathSciNet
80.
go back to reference Sleijpen GLG, Fokkema DR (1993) BiCGStab (l) for linear equations involving unsymmetric matrices with complex spectrum. Electron Trans Numer Anal 1:2000MathSciNet Sleijpen GLG, Fokkema DR (1993) BiCGStab (l) for linear equations involving unsymmetric matrices with complex spectrum. Electron Trans Numer Anal 1:2000MathSciNet
81.
go back to reference Trottenberg U, Oosterlee CW, Schüller A (2001) Multigrid: basics, parallelism and adaptivity. Academic, New York, NY Trottenberg U, Oosterlee CW, Schüller A (2001) Multigrid: basics, parallelism and adaptivity. Academic, New York, NY
82.
go back to reference Oosterlee CW, Washio T (1998) An evaluation of parallel multigrid as a solver and a preconditioner for singularly perturbed problems. SIAM J Sci Comput 19:87–110MATHMathSciNet Oosterlee CW, Washio T (1998) An evaluation of parallel multigrid as a solver and a preconditioner for singularly perturbed problems. SIAM J Sci Comput 19:87–110MATHMathSciNet
83.
go back to reference Sotiropoulos F, Borazjani I (2009) A review of the state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med Biol Eng Comput 47:245–256 Sotiropoulos F, Borazjani I (2009) A review of the state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med Biol Eng Comput 47:245–256
84.
go back to reference Ge L, Leo HL, Sotiropoulos F, Yoganathan AP (2005) Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J Biomech Eng 127:782 Ge L, Leo HL, Sotiropoulos F, Yoganathan AP (2005) Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J Biomech Eng 127:782
85.
go back to reference Ge L, Jones SC, Sotiropoulos F, Healy TM, Yoganathan AP (2003) Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J Biomech Eng Trans ASME 125:709–718 Ge L, Jones SC, Sotiropoulos F, Healy TM, Yoganathan AP (2003) Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J Biomech Eng Trans ASME 125:709–718
86.
go back to reference Gotoh K, Minamino T, Katoh O, Hamano Y, Fukui S, Hori M, Kusuoka H, Mishima M, Inoue M, Kamada T (1988) The role of intracoronary thrombus in unstable angina: angiographic assessment and thrombolytic therapy during ongoing anginal attacks. Circulation 77:526–534 Gotoh K, Minamino T, Katoh O, Hamano Y, Fukui S, Hori M, Kusuoka H, Mishima M, Inoue M, Kamada T (1988) The role of intracoronary thrombus in unstable angina: angiographic assessment and thrombolytic therapy during ongoing anginal attacks. Circulation 77:526–534
87.
go back to reference Kiris C, Kwak D, Rogers S (1997) Computational approach for probing the flow through artificial heart devices. J Biomech Eng 119:452 Kiris C, Kwak D, Rogers S (1997) Computational approach for probing the flow through artificial heart devices. J Biomech Eng 119:452
88.
go back to reference Mody N, Lomakin O, Doggett T, Diacovo T, King M (2005) Mechanics of transient platelet adhesion to von Willebrand factor under flow. Biophys J 88:1432–1443 Mody N, Lomakin O, Doggett T, Diacovo T, King M (2005) Mechanics of transient platelet adhesion to von Willebrand factor under flow. Biophys J 88:1432–1443
89.
go back to reference Cheng R, Lai YG, Chandran KB (2003) Two-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics. J Heart Valve Dis 12:772 Cheng R, Lai YG, Chandran KB (2003) Two-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics. J Heart Valve Dis 12:772
90.
go back to reference Rosenfeld M, Avrahami I, Einav S (2002) Unsteady effects on the flow across tilting disk valves. J Biomech Eng Trans ASME 124:21–29 Rosenfeld M, Avrahami I, Einav S (2002) Unsteady effects on the flow across tilting disk valves. J Biomech Eng Trans ASME 124:21–29
91.
go back to reference Pedrizzetti G (2005) Kinematic characterization of valvular opening. Phys Rev Lett 94:194502 Pedrizzetti G (2005) Kinematic characterization of valvular opening. Phys Rev Lett 94:194502
92.
go back to reference Pedrizzetti G, Domenichini F (2006) Flow-driven opening of a valvular leaflet. J Fluid Mech 569:321–330MATH Pedrizzetti G, Domenichini F (2006) Flow-driven opening of a valvular leaflet. J Fluid Mech 569:321–330MATH
93.
go back to reference Stijnen JMA, de Hart J, Bovendeerd PHM, van de Vosse FN (2004) Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves. J Fluids Struct 19:835–850 Stijnen JMA, de Hart J, Bovendeerd PHM, van de Vosse FN (2004) Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves. J Fluids Struct 19:835–850
94.
go back to reference Tai CH, Liew KM, Zhao Y (2007) Numerical simulation of 3D fluid-structure interaction flow using an immersed object method with overlapping grids. Comput Struct 85:749–762 Tai CH, Liew KM, Zhao Y (2007) Numerical simulation of 3D fluid-structure interaction flow using an immersed object method with overlapping grids. Comput Struct 85:749–762
95.
go back to reference Nobili M, Morbiducci U, Ponzini R, Del Gaudio C, Balducci A, Grigioni M, Maria Montevecchi F, Redaelli A (2008) Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid–structure interaction approach. J Biomech 41:2539–2550 Nobili M, Morbiducci U, Ponzini R, Del Gaudio C, Balducci A, Grigioni M, Maria Montevecchi F, Redaelli A (2008) Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid–structure interaction approach. J Biomech 41:2539–2550
96.
go back to reference De Tullio MD, Cristallo A, Balaras E, Verzicco R (2009) Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J Fluid Mech 622: 259–290MATH De Tullio MD, Cristallo A, Balaras E, Verzicco R (2009) Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J Fluid Mech 622: 259–290MATH
97.
go back to reference Borazjani I, Ge L, Sotiropoulos F (2010) High resolution fluid–structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Ann Biomed Eng 38(2):326–344. doi:10.1007/s10439-009-9807-x Borazjani I, Ge L, Sotiropoulos F (2010) High resolution fluid–structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Ann Biomed Eng 38(2):326–344. doi:10.1007/s10439-009-9807-x
98.
go back to reference Borazjani I, Sotiropoulos F (2010) The effect of implantation orientation of a bi-leaflet mechanical heart valve on kinematics and hemodynamics in an anatomic aorta. ASME J Biomech Eng. doi:10.1115/1.4002491 Borazjani I, Sotiropoulos F (2010) The effect of implantation orientation of a bi-leaflet mechanical heart valve on kinematics and hemodynamics in an anatomic aorta. ASME J Biomech Eng. doi:10.1115/1.4002491
99.
go back to reference Ge L, Sotiropoulos F (2010) Direction and magnitude of hemodynamic stresses on the leaflets of aortic valves: is there a link with valve calcification? J Biomech Eng 131:0145051–014509 Ge L, Sotiropoulos F (2010) Direction and magnitude of hemodynamic stresses on the leaflets of aortic valves: is there a link with valve calcification? J Biomech Eng 131:0145051–014509
100.
go back to reference Haj-Ali R, Dasi LP, Kim HS, Choi J, Leo HW, Yoganathan AP (2008) Structural simulations of prosthetic tri-leaflet aortic heart valves. J Biomech 41:1510–1519 Haj-Ali R, Dasi LP, Kim HS, Choi J, Leo HW, Yoganathan AP (2008) Structural simulations of prosthetic tri-leaflet aortic heart valves. J Biomech 41:1510–1519
101.
go back to reference Davies PF, Shi C, DePaola N, Helmke BP, Polacek DC (2001) Hemodynamics and the focal origin of atherosclerosis a spatial approach to endothelial structure, gene expression, and function. Ann N Y Acad Sci 947:7–17 Davies PF, Shi C, DePaola N, Helmke BP, Polacek DC (2001) Hemodynamics and the focal origin of atherosclerosis a spatial approach to endothelial structure, gene expression, and function. Ann N Y Acad Sci 947:7–17
102.
go back to reference Alevriadou R, Moake J, Turner N, Ruggeri Z, Folie B, Phillips M, Schreiber A, Hrinda M, McIntire L (1993) Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of von Willebrand factor binding to platelets. Blood 81:1263–1276 Alevriadou R, Moake J, Turner N, Ruggeri Z, Folie B, Phillips M, Schreiber A, Hrinda M, McIntire L (1993) Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of von Willebrand factor binding to platelets. Blood 81:1263–1276
103.
go back to reference Kulkarni S, Dopheide S, Yap C, Ravanat R, Freund M, Mangin P, Heel K, Street A, Harper I, Lanza F et al (2000) A revised model of platelet aggregation. J Clin Invest 105:783–791 Kulkarni S, Dopheide S, Yap C, Ravanat R, Freund M, Mangin P, Heel K, Street A, Harper I, Lanza F et al (2000) A revised model of platelet aggregation. J Clin Invest 105:783–791
104.
go back to reference Munn L, Melder R, Jain R (1996) Role of erythrocytes in leukocyte–endothelial interactions: mathematical model and experimental validation. Biophys J 71:466–478 Munn L, Melder R, Jain R (1996) Role of erythrocytes in leukocyte–endothelial interactions: mathematical model and experimental validation. Biophys J 71:466–478
105.
go back to reference Sun C, Migliorini C, Munn LL (2003) Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis. Biophys J 85:208–222 Sun C, Migliorini C, Munn LL (2003) Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis. Biophys J 85:208–222
106.
go back to reference Sloop G (1998) Insights into the relationship of fatty streaks to raised atherosclerotic lesions provided by the hemorheologic–hemodynamic theory of atherogenesis. Med Hypotheses 51:385–388 Sloop G (1998) Insights into the relationship of fatty streaks to raised atherosclerotic lesions provided by the hemorheologic–hemodynamic theory of atherogenesis. Med Hypotheses 51:385–388
107.
go back to reference Turitto V, Weiss H, Baumgartner H (1980) The effect of shear rate on platelet interaction with subendothelium exposed to citrated human blood. Microvasc Res 19:352 Turitto V, Weiss H, Baumgartner H (1980) The effect of shear rate on platelet interaction with subendothelium exposed to citrated human blood. Microvasc Res 19:352
108.
go back to reference Goldsmith H, Bell D, Spain S, McIntosh F (1999) Effect of red blood cells and their aggregates on platelets and white cells in flowing blood. Biorheology 36:461–468 Goldsmith H, Bell D, Spain S, McIntosh F (1999) Effect of red blood cells and their aggregates on platelets and white cells in flowing blood. Biorheology 36:461–468
109.
go back to reference Goldsmith H, Kaufer E, McIntosh F (1995) Effect of hematocrit on adenine diphosphate-induced aggregation of human platelets in tube flow. Biorheology 32:537–552 Goldsmith H, Kaufer E, McIntosh F (1995) Effect of hematocrit on adenine diphosphate-induced aggregation of human platelets in tube flow. Biorheology 32:537–552
110.
go back to reference Aarts P, van den Broek S, Prins G, Kuiken G, Sixma J, Heehaar R (1988) Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis 8:819–824 Aarts P, van den Broek S, Prins G, Kuiken G, Sixma J, Heehaar R (1988) Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis 8:819–824
111.
go back to reference Wootton D, Markou C, Hanson S, Ku D (2001) A mechanistic model of acute platelet accumulation in thrombogenic stenoses. Ann Biomed Eng 29:321–329 Wootton D, Markou C, Hanson S, Ku D (2001) A mechanistic model of acute platelet accumulation in thrombogenic stenoses. Ann Biomed Eng 29:321–329
112.
go back to reference Cha W, Beissinger R (1996) Augmented mass transport of macromolecules in sheared suspensions to surfaces B. Bovine serum albumin. J Colloid Interf Sci 178:1–9 Cha W, Beissinger R (1996) Augmented mass transport of macromolecules in sheared suspensions to surfaces B. Bovine serum albumin. J Colloid Interf Sci 178:1–9
113.
go back to reference Dao M, Limb CT, Suresh S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 51:2259–2280 Dao M, Limb CT, Suresh S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 51:2259–2280
114.
go back to reference Ramanujan S, Pozrikidis C (1998) Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J Fluid Mech 361:117–143MATHMathSciNet Ramanujan S, Pozrikidis C (1998) Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J Fluid Mech 361:117–143MATHMathSciNet
115.
go back to reference Breyiannis G, Pozrikidis C (2000) Simple shear flow of suspensions of elastic capsules. Theor Comput Fluid Dyn 13:327–347MATH Breyiannis G, Pozrikidis C (2000) Simple shear flow of suspensions of elastic capsules. Theor Comput Fluid Dyn 13:327–347MATH
116.
go back to reference Pozrikidis C (2001) Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J Fluid Mech 440:269–291MATH Pozrikidis C (2001) Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J Fluid Mech 440:269–291MATH
117.
go back to reference Pozrikidis C (2003) Numerical simulation of the flow-induced deformation of red blood cells. Ann Biomed Eng 31:1194–1205 Pozrikidis C (2003) Numerical simulation of the flow-induced deformation of red blood cells. Ann Biomed Eng 31:1194–1205
118.
go back to reference Pozrikidis C (2005) Numerical simulation of cell motion in tube flow. Ann Biomed Eng 33:165–178 Pozrikidis C (2005) Numerical simulation of cell motion in tube flow. Ann Biomed Eng 33:165–178
119.
go back to reference Eggleton C, Popel A (1998) Large deformation of red blood cell ghosts in a simple shear flow. Phys Fluids 10:1834–1845 Eggleton C, Popel A (1998) Large deformation of red blood cell ghosts in a simple shear flow. Phys Fluids 10:1834–1845
120.
go back to reference Liu Y, Liu WK (2006) Rheology of red blood cell aggregation by computer simulation. J Comput Phys Arch 220(1):139–154. ISSN:0021-9991 Liu Y, Liu WK (2006) Rheology of red blood cell aggregation by computer simulation. J Comput Phys Arch 220(1):139–154. ISSN:0021-9991
121.
go back to reference Liu WK, Liu Y, Farrell D, Zhang L, Wang XS, Fukui Y, Patankar N, Zhang Y, Bajaj C, Lee J et al (2006a) Immersed finite element method and its applications to biological systems. Comput. Methods Appl Mech Eng 195:1722–1749MATHMathSciNet Liu WK, Liu Y, Farrell D, Zhang L, Wang XS, Fukui Y, Patankar N, Zhang Y, Bajaj C, Lee J et al (2006a) Immersed finite element method and its applications to biological systems. Comput. Methods Appl Mech Eng 195:1722–1749MATHMathSciNet
122.
go back to reference Liu X, Tang Z, Zeng Z, Chen X, Yao W, Yan Z, Shi Y, Shan H, Sun D, He D, Wen Z (2007) The measurement of shear modulus and membrane surface viscosity of RBC membrane with ektacytometry: a new technique. Math Biosci 209(1):190–204 Liu X, Tang Z, Zeng Z, Chen X, Yao W, Yan Z, Shi Y, Shan H, Sun D, He D, Wen Z (2007) The measurement of shear modulus and membrane surface viscosity of RBC membrane with ektacytometry: a new technique. Math Biosci 209(1):190–204
123.
go back to reference Dzwinel W, Boryczko K, Yuen D (2003) A discrete-particle model of blood dynamics in capillary vessels. J Colloid Interf Sci 258(1):163–173 Dzwinel W, Boryczko K, Yuen D (2003) A discrete-particle model of blood dynamics in capillary vessels. J Colloid Interf Sci 258(1):163–173
124.
go back to reference Tsubota K, Wada S, Yamaguchi T (2006) Particle method for computer simulation of red blood cell motion in blood flow. Comput Methods Programs Biomed 83:139–146 Tsubota K, Wada S, Yamaguchi T (2006) Particle method for computer simulation of red blood cell motion in blood flow. Comput Methods Programs Biomed 83:139–146
125.
go back to reference Dupin M, Halliday I, Care C (2006) A multi-component lattice Boltzmann scheme: towards the mesoscale simulation of blood flow. Med Eng Phys 8:3–18 Dupin M, Halliday I, Care C (2006) A multi-component lattice Boltzmann scheme: towards the mesoscale simulation of blood flow. Med Eng Phys 8:3–18
126.
go back to reference Hyakutake T, Matsumoto T, Yanase S (2006) Lattice Boltzmann simulation of blood cell behavior at microvascular bifurcations. Math Comput Simul 72:134–140MATHMathSciNet Hyakutake T, Matsumoto T, Yanase S (2006) Lattice Boltzmann simulation of blood cell behavior at microvascular bifurcations. Math Comput Simul 72:134–140MATHMathSciNet
127.
go back to reference MacMeccan R, Clausen J, Neitzel P, Aidun CK (2009) Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. J Fluid Mech 618:13–39MATHMathSciNet MacMeccan R, Clausen J, Neitzel P, Aidun CK (2009) Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. J Fluid Mech 618:13–39MATHMathSciNet
128.
go back to reference Wu J, Aidun CK (2009) Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force. Int J Numer Methods Fluids 62(7):765–783. doi:10.1002/fld.2043 Wu J, Aidun CK (2009) Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force. Int J Numer Methods Fluids 62(7):765–783. doi:10.1002/fld.2043
129.
go back to reference Dzwinel W, Yuen D (2002) Mesoscopic dispersion of colloidal agglomerate in a complex fluid modelled by a hybrid fluid–particle model. J Colloid Interf Sci 247(2):463–480 Dzwinel W, Yuen D (2002) Mesoscopic dispersion of colloidal agglomerate in a complex fluid modelled by a hybrid fluid–particle model. J Colloid Interf Sci 247(2):463–480
130.
go back to reference Aidun C, Lu Y, Ding EJ (1998) Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J Fluid Mech 373:287–311MATH Aidun C, Lu Y, Ding EJ (1998) Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J Fluid Mech 373:287–311MATH
131.
go back to reference Qi D (1999) Lattice-Boltzmann simulations of particles in non-zero-Reynolds-number flows. J Fluid Mech 385:41–62MATHMathSciNet Qi D (1999) Lattice-Boltzmann simulations of particles in non-zero-Reynolds-number flows. J Fluid Mech 385:41–62MATHMathSciNet
132.
go back to reference Ding E, Aidun C (2000) The dynamics and scaling law for particles suspended in shear flow with inertia. J Fluid Mech 423:317–344MATH Ding E, Aidun C (2000) The dynamics and scaling law for particles suspended in shear flow with inertia. J Fluid Mech 423:317–344MATH
133.
go back to reference Ding E, Aidun C (2003) Extension of the lattice-Boltzmann method or direct simulation of suspended particles near contact. J Stat Phys 112:685–707MATH Ding E, Aidun C (2003) Extension of the lattice-Boltzmann method or direct simulation of suspended particles near contact. J Stat Phys 112:685–707MATH
134.
go back to reference Ding E, Aidun C (2006) Cluster size distribution and scaling for spherical particles and red blood cells in pressure-driven flows at small Reynolds number. Phys Rev Lett 96:204502-1–204502-4 Ding E, Aidun C (2006) Cluster size distribution and scaling for spherical particles and red blood cells in pressure-driven flows at small Reynolds number. Phys Rev Lett 96:204502-1–204502-4
135.
go back to reference Ladd A, Verberg R (2001) Lattice-Boltzmann simulations of particle–fluid suspensions. J Stat Phys 104:1191–1251MATHMathSciNet Ladd A, Verberg R (2001) Lattice-Boltzmann simulations of particle–fluid suspensions. J Stat Phys 104:1191–1251MATHMathSciNet
136.
go back to reference Aidun CK, Clausen JR (2010) Lattice-Boltzmann method for Complex Flows. Annu Rev Fluid Mech 42:439–72 Aidun CK, Clausen JR (2010) Lattice-Boltzmann method for Complex Flows. Annu Rev Fluid Mech 42:439–72
137.
go back to reference Chen S, Doolen G (1998) Lattice Boltzmann method for fluid flows. Ann Rev Fluid Mech 30:329–364MathSciNet Chen S, Doolen G (1998) Lattice Boltzmann method for fluid flows. Ann Rev Fluid Mech 30:329–364MathSciNet
138.
go back to reference McNamara G, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett 61(20):2332–2335 McNamara G, Zanetti G (1988) Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett 61(20):2332–2335
139.
go back to reference MacMeccan R, Atlanta GA (2007) Mechanistic effects of erythrocytes on platelet deposition in coronary thrombosis. PhD Thesis, Georgia Institute of Technology, Atlanta, GA MacMeccan R, Atlanta GA (2007) Mechanistic effects of erythrocytes on platelet deposition in coronary thrombosis. PhD Thesis, Georgia Institute of Technology, Atlanta, GA
140.
go back to reference Clausen J, Aidun CK (2009) Galilean invariance in the lattice-Boltzmann method and its effect on the calculation of rheological properties in suspensions. Int J Multiphas Flow 35:307–311 Clausen J, Aidun CK (2009) Galilean invariance in the lattice-Boltzmann method and its effect on the calculation of rheological properties in suspensions. Int J Multiphas Flow 35:307–311
141.
go back to reference Rankin C, Brogan F (1986) An element independent corotational procedure for the treatments of large rotations. J Press Vessel Technol 108:165–174 Rankin C, Brogan F (1986) An element independent corotational procedure for the treatments of large rotations. J Press Vessel Technol 108:165–174
142.
go back to reference Campanelli M, Berzeri M, Shabana A (2000) Performance of the incremental and non-incremental finite elements formulations in flexible multibody problems. J Mech Des 122:498–507 Campanelli M, Berzeri M, Shabana A (2000) Performance of the incremental and non-incremental finite elements formulations in flexible multibody problems. J Mech Des 122:498–507
143.
go back to reference Moller T, Trumbore B (1977) Fast, minimum storage ray-triangle intersection. J Graph Tools 2:21–28 Moller T, Trumbore B (1977) Fast, minimum storage ray-triangle intersection. J Graph Tools 2:21–28
144.
go back to reference Buxton G, Verberg R, Jasnow D, Balazs A (2005) Newtonian fluid meets an elastic solid: coupling lattice Boltzmann and lattice-spring models. Phys Rev E 71:56707. Buxton G, Verberg R, Jasnow D, Balazs A (2005) Newtonian fluid meets an elastic solid: coupling lattice Boltzmann and lattice-spring models. Phys Rev E 71:56707.
145.
go back to reference Waugh R, Evans E (1979) Thermoelasticity of red blood cell membrane. Biophys J 26: 115–132 Waugh R, Evans E (1979) Thermoelasticity of red blood cell membrane. Biophys J 26: 115–132
146.
go back to reference Evans A, Waugh R, Melnik L (1976) Elastic area compressibility modulus of red cell membrane. Biophys J 16(6):585–595 Evans A, Waugh R, Melnik L (1976) Elastic area compressibility modulus of red cell membrane. Biophys J 16(6):585–595
147.
go back to reference Hwang W, Waugh R (1997) Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells. Biophys J 72:2669–2678 Hwang W, Waugh R (1997) Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells. Biophys J 72:2669–2678
148.
go back to reference Tozeren A, Skalak R, Fedorcix K, Sung K, Chien S (1984) Constitutive equations of erythrocyte membrane incorporating evolving preferred configuration. Biophys J 45:541–549 Tozeren A, Skalak R, Fedorcix K, Sung K, Chien S (1984) Constitutive equations of erythrocyte membrane incorporating evolving preferred configuration. Biophys J 45:541–549
149.
go back to reference Schmid-Schönbein H, Grebe R, Heidtmann H (1983) A new membrane concept for viscous RBC deformation in shear:spectrin oligomer complexes as a Bingham-fluid in shear and a dense periodic colloidal system in bending. Ann N Y Acad Sci 416:225–254 Schmid-Schönbein H, Grebe R, Heidtmann H (1983) A new membrane concept for viscous RBC deformation in shear:spectrin oligomer complexes as a Bingham-fluid in shear and a dense periodic colloidal system in bending. Ann N Y Acad Sci 416:225–254
150.
go back to reference Skalak R, Tozeren S, Zarda R, Chien S (1973) Strain energy function of red blood cell membranes. Biophys J 13:245–264 Skalak R, Tozeren S, Zarda R, Chien S (1973) Strain energy function of red blood cell membranes. Biophys J 13:245–264
151.
go back to reference Barthes-Biesel D, Diaz A, Dhenin E (2002) Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. J Fluid Mech 460:211–222MATH Barthes-Biesel D, Diaz A, Dhenin E (2002) Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. J Fluid Mech 460:211–222MATH
152.
go back to reference Evans E, Skalak R (1980) Mechanics and thermodynamics of biomembranes. CRC, Boca Raton, FL Evans E, Skalak R (1980) Mechanics and thermodynamics of biomembranes. CRC, Boca Raton, FL
153.
go back to reference Harkness J, Whittington R (1970) Blood-plasma viscosity: an approximate temperature-invariant arising from generalized concepts. Biorheology 6:169–187 Harkness J, Whittington R (1970) Blood-plasma viscosity: an approximate temperature-invariant arising from generalized concepts. Biorheology 6:169–187
154.
go back to reference Aarts P, Stendijk P, Sixma J, Heethaar R (1986) Fluid shear as a possible mechanism for platelet diffusivity in flowing blood. J Biomech 19:799–805 Aarts P, Stendijk P, Sixma J, Heethaar R (1986) Fluid shear as a possible mechanism for platelet diffusivity in flowing blood. J Biomech 19:799–805
155.
go back to reference Jung J, Lyczkowski R, Panchal C, Hassanein A (2006) Multiphase hemodynamic simulation of pulsatile flow in a coronary artery. J Biomech 39:2064–2073 Jung J, Lyczkowski R, Panchal C, Hassanein A (2006) Multiphase hemodynamic simulation of pulsatile flow in a coronary artery. J Biomech 39:2064–2073
156.
go back to reference Yao W, Yan Z, Sun D, Ka W, Xie L, Chien S (2004) Low viscosity ektacytometry and its validation tested by flow chamber. J Biomech 34:1501–1509 Yao W, Yan Z, Sun D, Ka W, Xie L, Chien S (2004) Low viscosity ektacytometry and its validation tested by flow chamber. J Biomech 34:1501–1509
157.
go back to reference Batchelor G (1970) The stress in a suspension of force-free particles. J Fluid Mech 43: 545–570MathSciNet Batchelor G (1970) The stress in a suspension of force-free particles. J Fluid Mech 43: 545–570MathSciNet
158.
go back to reference Fung Y (1993) Biomechanics mechanical properties of living tissues. Springer, New York, NY Fung Y (1993) Biomechanics mechanical properties of living tissues. Springer, New York, NY
159.
go back to reference Haga J, Beaudoin A, White J, Strony J (1998) Quantification of the passive mechanical properties of the resting platelet. Ann Biomed Eng 26:268–277 Haga J, Beaudoin A, White J, Strony J (1998) Quantification of the passive mechanical properties of the resting platelet. Ann Biomed Eng 26:268–277
160.
go back to reference Goldsmith H, Marlow J (1979) Flow behavior of erythrocytes II. Particle motions in concentrated suspensions of ghost Cells. J Colloid Interf Sci 71:383–407 Goldsmith H, Marlow J (1979) Flow behavior of erythrocytes II. Particle motions in concentrated suspensions of ghost Cells. J Colloid Interf Sci 71:383–407
161.
go back to reference Le T, Borazjani I, Sotiropoulos F (2010) Vorticity dynamics in an intracranial aneurysm. ASME J Biomech Eng (In Press) Le T, Borazjani I, Sotiropoulos F (2010) Vorticity dynamics in an intracranial aneurysm. ASME J Biomech Eng (In Press)
162.
go back to reference Shojima M, Oshima M, Takagi K, Torii R, Nagata K, Shirouzu I, Morita A, Kirino T (2005) Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms. Stroke 36:1933–1938 Shojima M, Oshima M, Takagi K, Torii R, Nagata K, Shirouzu I, Morita A, Kirino T (2005) Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms. Stroke 36:1933–1938
163.
go back to reference Steinman DA, Milner JS, Norley CJ, Lownie SP, Holdsworth DW (2003) Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am J Neuroradiol 24:559–566 Steinman DA, Milner JS, Norley CJ, Lownie SP, Holdsworth DW (2003) Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am J Neuroradiol 24:559–566
164.
go back to reference Wolters B, Rutten MCM, Schurink GWH, Kose U, de Hart J, van de Vosse FN (2005) A patient-specific computational model of fluid–structure interaction in abdominal aortic aneurysms. Med Eng Phys 27:871–883 Wolters B, Rutten MCM, Schurink GWH, Kose U, de Hart J, van de Vosse FN (2005) A patient-specific computational model of fluid–structure interaction in abdominal aortic aneurysms. Med Eng Phys 27:871–883
165.
go back to reference Pekkan K, ZÃlicourt D, Ge L, Sotiropoulos F, Frakes D, Fogel MA, Yoganathan AP (2005) Physics-driven CFD modeling of complex anatomical cardiovascular flows: a TCPC case study. Ann Biomed Eng 33:284–300 Pekkan K, ZÃlicourt D, Ge L, Sotiropoulos F, Frakes D, Fogel MA, Yoganathan AP (2005) Physics-driven CFD modeling of complex anatomical cardiovascular flows: a TCPC case study. Ann Biomed Eng 33:284–300
Metadata
Title
Computational Techniques for Biological Fluids: From Blood Vessel Scale to Blood Cells
Authors
Fotis Sotiropoulos
Cyrus Aidun
Iman Borazjani
Robert MacMeccan
Copyright Year
2011
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4419-7350-4_3