Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 9/2022

04-04-2022 | Original Article

Computing formal concepts in parallel via a workload rebalance approach

Authors: Ligeng Zou, Xiaozhi Chen, Tingting He, Jianhua Dai

Published in: International Journal of Machine Learning and Cybernetics | Issue 9/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The scalability issue has always been a bottleneck for formal concept analysis (FCA) since the number of formal concepts is possibly exponential in the formal context. Motivated by the need to handle large formal contexts efficiently, we propose a parallel algorithm for computing formal concepts, the aim of which is to make Close-by-One (CbO) and its variants highly parallelized and easy to apply. Current approaches to parallelization of CbO-type algorithms such as PCbO (Parallel CbO) compute concepts in the top L recursion levels in serial and then turn to parallel computation after that. To avoid massive serial computations and the hassle of choosing the hyperparameter L in real applications, our proposed algorithm enters parallelization at once after the computation of the top concept and its direct successors, and then uses a parallel reshuffle approach to rebalance the workload distribution among worker threads without communication with the main thread. We describe the algorithm and present an experimental evaluation of its performance and comparison with PCbO on various datasets. Empirical analyses demonstrate that our algorithm is superior when applied to various types of formal contexts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Andrews S (2011) In-close2, a high performance formal concept miner. In: Andrews S, Polovina S, Hill R, Akhgar B (eds) Conceptual structures for discovering knowledge. Springer, pp 50–62CrossRef Andrews S (2011) In-close2, a high performance formal concept miner. In: Andrews S, Polovina S, Hill R, Akhgar B (eds) Conceptual structures for discovering knowledge. Springer, pp 50–62CrossRef
2.
go back to reference Andrews S (2015) A ‘Best-of-Breed’ approach for designing a fast algorithm for computing fixpoints of Galois Connections. Inf Sci 295:633–649MathSciNetCrossRef Andrews S (2015) A ‘Best-of-Breed’ approach for designing a fast algorithm for computing fixpoints of Galois Connections. Inf Sci 295:633–649MathSciNetCrossRef
3.
go back to reference Andrews S (2017) Making Use of Empty Intersections to Improve the Performance of CbO-Type Algorithms. In: Proceedings of the 14th international conference on formal concept analysis. Springer, pp 56–71 Andrews S (2017) Making Use of Empty Intersections to Improve the Performance of CbO-Type Algorithms. In: Proceedings of the 14th international conference on formal concept analysis. Springer, pp 56–71
4.
go back to reference Andrews S (2018) A new method for inheriting canonicity test failures in Close-by-One type algorithms. In: Proceedings of the 14th international conference on concept lattices and their applications. Springer, pp 255–266 Andrews S (2018) A new method for inheriting canonicity test failures in Close-by-One type algorithms. In: Proceedings of the 14th international conference on concept lattices and their applications. Springer, pp 255–266
5.
go back to reference Andrews S, Orphanides C (2010) FcaBedrock, a Formal Context Creator. In: Croitoru M, Ferré S, Lukose D (eds) Conceptual structures: from information to intelligence. Springer, New York, pp 181–184CrossRef Andrews S, Orphanides C (2010) FcaBedrock, a Formal Context Creator. In: Croitoru M, Ferré S, Lukose D (eds) Conceptual structures: from information to intelligence. Springer, New York, pp 181–184CrossRef
6.
go back to reference Belohlavek R, Outrata J, Trnecka M (2019) Factorizing Boolean matrices using formal concepts and iterative usage of essential entries. Inf Sci 489:37–49MathSciNetCrossRef Belohlavek R, Outrata J, Trnecka M (2019) Factorizing Boolean matrices using formal concepts and iterative usage of essential entries. Inf Sci 489:37–49MathSciNetCrossRef
7.
go back to reference Dong H, Ma Y, Gong X (2008) A new parallel algorithm for construction of concept lattice. J Front Comput Sci Technol 2(6):651–657 Dong H, Ma Y, Gong X (2008) A new parallel algorithm for construction of concept lattice. J Front Comput Sci Technol 2(6):651–657
9.
go back to reference Ganter B (2010) Two basic algorithms in concept analysis. In: Kwuida L, Sertkaya B (eds) Formal concept analysis. Springer, New York, pp 312–340CrossRef Ganter B (2010) Two basic algorithms in concept analysis. In: Kwuida L, Sertkaya B (eds) Formal concept analysis. Springer, New York, pp 312–340CrossRef
10.
go back to reference Ganter B, Wille R (1999) Formal concept analysis: mathematical foundations. Springer, New YorkCrossRef Ganter B, Wille R (1999) Formal concept analysis: mathematical foundations. Springer, New YorkCrossRef
11.
go back to reference Godin R, Missaoui R, Alaoui H (1995) Incremental concept formation algorithms based on Galois lattices. Comput Intell 11:246–267CrossRef Godin R, Missaoui R, Alaoui H (1995) Incremental concept formation algorithms based on Galois lattices. Comput Intell 11:246–267CrossRef
13.
go back to reference Janostik R, Konecny J, Krajca P (2020) Interface between logical analysis of data and formal concept analysis. Eur J Oper Res 284:792–800MathSciNetCrossRef Janostik R, Konecny J, Krajca P (2020) Interface between logical analysis of data and formal concept analysis. Eur J Oper Res 284:792–800MathSciNetCrossRef
14.
go back to reference Li J, Mei C, Xu W, Qian Y (2015) Concept learning via granular computing: a cognitive viewpoint. Inf Sci 298:447–467MathSciNetCrossRef Li J, Mei C, Xu W, Qian Y (2015) Concept learning via granular computing: a cognitive viewpoint. Inf Sci 298:447–467MathSciNetCrossRef
15.
go back to reference Kengue JFD, Valtchev P, Djamegni CT (2005) A parallel algorithm for lattice construction. In: Proceedings of the International conference on formal concept analysis. Springer, pp 249–264 Kengue JFD, Valtchev P, Djamegni CT (2005) A parallel algorithm for lattice construction. In: Proceedings of the International conference on formal concept analysis. Springer, pp 249–264
16.
go back to reference Kodagoda N, Andrews S, Pulasinghe K (2017) A parallel version of the in-close algorithm. In: Proceedings of 6th national conference on technology and management, vol 7872818, pp 1–5 Kodagoda N, Andrews S, Pulasinghe K (2017) A parallel version of the in-close algorithm. In: Proceedings of 6th national conference on technology and management, vol 7872818, pp 1–5
17.
go back to reference Kodagoda N, Pulasinghe K (2016) Comparision between features of CbO based algorithms for generating formal concepts. Int J Concept Struct Smart Appl 4:1–34 Kodagoda N, Pulasinghe K (2016) Comparision between features of CbO based algorithms for generating formal concepts. Int J Concept Struct Smart Appl 4:1–34
18.
go back to reference Konecny J, Krajca P (2021) Systematic categorization and evaluation of CbO-based algorithms in FCA. Inf Sci 575:265–288MathSciNetCrossRef Konecny J, Krajca P (2021) Systematic categorization and evaluation of CbO-based algorithms in FCA. Inf Sci 575:265–288MathSciNetCrossRef
19.
go back to reference Krajca P, Outrata J, Vychodil V (2010) Parallel algorithm for computing fixpoints of Galois connections. Ann Math Artif Intell 59:257–272MathSciNetCrossRef Krajca P, Outrata J, Vychodil V (2010) Parallel algorithm for computing fixpoints of Galois connections. Ann Math Artif Intell 59:257–272MathSciNetCrossRef
20.
go back to reference Krajca P, Outrata J, Vychodil V (2010) Advances in algorithms based on CbO. In: Proceedings of the 7th international conference on concept lattices and their applications, pp 325–337 Krajca P, Outrata J, Vychodil V (2010) Advances in algorithms based on CbO. In: Proceedings of the 7th international conference on concept lattices and their applications, pp 325–337
21.
go back to reference Krajca P, Vychodil V (2009) Distributed algorithm for computing formal concepts using map-reduce framework. In: Adams NM, Robardet C, Siebes A, Boulicaut J-F (eds) Advances in intelligent data analysis VIII. Springer, New York, pp 333–344CrossRef Krajca P, Vychodil V (2009) Distributed algorithm for computing formal concepts using map-reduce framework. In: Adams NM, Robardet C, Siebes A, Boulicaut J-F (eds) Advances in intelligent data analysis VIII. Springer, New York, pp 333–344CrossRef
22.
go back to reference Kuznetsov SO (1989) Interpretation on graphs and complexity characteristics of a search for specific patterns. Nauchno-Tekhnicheskaya Informatsiya, seriya 2 Informatsionnye protsessy i sistemy 23(1):23–27 Kuznetsov SO (1989) Interpretation on graphs and complexity characteristics of a search for specific patterns. Nauchno-Tekhnicheskaya Informatsiya, seriya 2 Informatsionnye protsessy i sistemy 23(1):23–27
23.
go back to reference Kuznetsov SO (1993) A fast algorithm for computing all intersections of objects in a finite semi-lattice. Nauchno-Tekhnicheskaya Informatsiya, seriya 2 Informatsionnye protsessy i sistemy 27(1):17–20 Kuznetsov SO (1993) A fast algorithm for computing all intersections of objects in a finite semi-lattice. Nauchno-Tekhnicheskaya Informatsiya, seriya 2 Informatsionnye protsessy i sistemy 27(1):17–20
25.
go back to reference Kuznetsov SO (1999) Learning of simple conceptual graphs from positive and negative examples. In: Żytkow JM, Rauch J (eds) Principles of data mining and knowledge discovery. Springer, Berlin, pp 384–391CrossRef Kuznetsov SO (1999) Learning of simple conceptual graphs from positive and negative examples. In: Żytkow JM, Rauch J (eds) Principles of data mining and knowledge discovery. Springer, Berlin, pp 384–391CrossRef
26.
27.
go back to reference Kuznetsov SO, Obiedkov SA (2002) Comparing performance of algorithms for generating concept lattices. J Exp Theor Artif Intell 14:189–216CrossRef Kuznetsov SO, Obiedkov SA (2002) Comparing performance of algorithms for generating concept lattices. J Exp Theor Artif Intell 14:189–216CrossRef
28.
go back to reference Kwon SE, Kim YT, Suh H, Lee H (2021) Identifying the mobile application repertoire based on weighted formal concept analysis. Expert Syst Appl 173:114678CrossRef Kwon SE, Kim YT, Suh H, Lee H (2021) Identifying the mobile application repertoire based on weighted formal concept analysis. Expert Syst Appl 173:114678CrossRef
29.
go back to reference Li J, Aswani Kumar C, Mei C, Wang X (2017) Comparison of reduction in formal decision contexts. Int J Approx Reason 80:100–122MathSciNetCrossRef Li J, Aswani Kumar C, Mei C, Wang X (2017) Comparison of reduction in formal decision contexts. Int J Approx Reason 80:100–122MathSciNetCrossRef
30.
go back to reference Li X, Shao M-W, Zhao X-M (2017) Constructing lattice based on irreducible concepts. Int J Mach Learn Cyber 8:109–122CrossRef Li X, Shao M-W, Zhao X-M (2017) Constructing lattice based on irreducible concepts. Int J Mach Learn Cyber 8:109–122CrossRef
31.
go back to reference Ma J-M, Cai M-J, Zou C-J (2017) Concept acquisition approach of object-oriented concept lattices. Int J Mach Learn Cyber 8:123–134CrossRef Ma J-M, Cai M-J, Zou C-J (2017) Concept acquisition approach of object-oriented concept lattices. Int J Mach Learn Cyber 8:123–134CrossRef
34.
go back to reference Outrata J, Vychodil V (2012) Fast algorithm for computing fixpoints of Galois connections induced by object-attribute relational data. Inf Sci 185:114–127MathSciNetCrossRef Outrata J, Vychodil V (2012) Fast algorithm for computing fixpoints of Galois connections induced by object-attribute relational data. Inf Sci 185:114–127MathSciNetCrossRef
35.
go back to reference Poelmans J, Kuznetsov SO, Ignatov DI, Dedene G (2013) Formal concept analysis in knowledge processing: a survey on models and techniques. Expert Syst Appl 40:6601–6623CrossRef Poelmans J, Kuznetsov SO, Ignatov DI, Dedene G (2013) Formal concept analysis in knowledge processing: a survey on models and techniques. Expert Syst Appl 40:6601–6623CrossRef
36.
go back to reference Qian T, Wei L, Qi J (2017) Decomposition methods of formal contexts to construct concept lattices. Int J Mach Learn Cyber 8:95–108CrossRef Qian T, Wei L, Qi J (2017) Decomposition methods of formal contexts to construct concept lattices. Int J Mach Learn Cyber 8:95–108CrossRef
37.
go back to reference Qin K, Lin H, Jiang Y (2020) Local attribute reductions of formal contexts. Int J Mach Learn Cyber 11:81–93CrossRef Qin K, Lin H, Jiang Y (2020) Local attribute reductions of formal contexts. Int J Mach Learn Cyber 11:81–93CrossRef
38.
go back to reference Shi Y, Mi Y, Li J, Liu W (2019) Concurrent concept-cognitive learning model for classification. Inf Sci 496:65–81CrossRef Shi Y, Mi Y, Li J, Liu W (2019) Concurrent concept-cognitive learning model for classification. Inf Sci 496:65–81CrossRef
39.
go back to reference Strok F, Neznanov A (2010) Comparing and analyzing the computational complexity of FCA algorithms. In: Proceedings of the 2010 annual research conference of the South African institute of computer scientists and information technologists on. ACM Press, pp 417–420 Strok F, Neznanov A (2010) Comparing and analyzing the computational complexity of FCA algorithms. In: Proceedings of the 2010 annual research conference of the South African institute of computer scientists and information technologists on. ACM Press, pp 417–420
40.
go back to reference Van der Merwe D, Obiedkov S, Kourie D (2004) AddIntent: a new incremental algorithm for constructing concept lattices. In: Lecture notes in artificial intelligence, pp 205–206 Van der Merwe D, Obiedkov S, Kourie D (2004) AddIntent: a new incremental algorithm for constructing concept lattices. In: Lecture notes in artificial intelligence, pp 205–206
41.
go back to reference Wille R (1982) Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I (ed) Ordered sets. Springer, New York, pp 445–470CrossRef Wille R (1982) Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I (ed) Ordered sets. Springer, New York, pp 445–470CrossRef
42.
go back to reference Xu B, de Fréin R, Robson E, Foghlú Ó (2012) Distributed formal concept analysis algorithms based on an iterative MapReduce framework. In: Domenach F, Ignatov DI, Poelmans J (eds) Formal concept analysis. Springer, New York, pp 292–308CrossRef Xu B, de Fréin R, Robson E, Foghlú Ó (2012) Distributed formal concept analysis algorithms based on an iterative MapReduce framework. In: Domenach F, Ignatov DI, Poelmans J (eds) Formal concept analysis. Springer, New York, pp 292–308CrossRef
43.
go back to reference Zhang T, Bai D, Li H (2017) Parallel concept computing based on bottom-up decomposition of attribute topology. J Softw 28:3129–3145MathSciNetMATH Zhang T, Bai D, Li H (2017) Parallel concept computing based on bottom-up decomposition of attribute topology. J Softw 28:3129–3145MathSciNetMATH
46.
go back to reference Zou L, Zhang Z, Long J (2015) A fast incremental algorithm for constructing concept lattices. Expert Syst Appl 42:4474–4481CrossRef Zou L, Zhang Z, Long J (2015) A fast incremental algorithm for constructing concept lattices. Expert Syst Appl 42:4474–4481CrossRef
Metadata
Title
Computing formal concepts in parallel via a workload rebalance approach
Authors
Ligeng Zou
Xiaozhi Chen
Tingting He
Jianhua Dai
Publication date
04-04-2022
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 9/2022
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-022-01547-1

Other articles of this Issue 9/2022

International Journal of Machine Learning and Cybernetics 9/2022 Go to the issue