Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 3/2017

11-07-2017 | RESEARCH PAPER

Concurrent multi-scale design optimization of composite frames with manufacturing constraints

Authors: Jun Yan, Zunyi Duan, Erik Lund, Jingyuan Wang

Published in: Structural and Multidisciplinary Optimization | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a gradient based concurrent multi-scale design optimization method for composite frames considering specific manufacturing constraints raised from the aerospace industrial requirements. Geometrical parameters of the frame components at the macro-structural scale and the discrete fiber winding angles at the micro-material scale are introduced as the independent design variables at the two geometrical scales. The DMO (Discrete Material Optimization) approach is utilized to couple the two geometrical scales and realize the simultaneous optimization of macroscopic topology and microscopic material selection. Six kinds of manufacturing constraints are explicitly included in the optimization model as series of linear inequalities or equalities. The capabilities of the proposed optimization model are demonstrated with the example of compliance minimization, subject to constraint on the composite volume. The linear constraints and optimization problems are solved by Sequential Linear Programming (SLP) optimization algorithm with move limit strategy. Numerical results show the potential of weight saving and structural robustness design with the proposed concurrent optimization model. The multi-scale optimization model, considering specific manufacturing constraints, provides new choices for the design of the composite frame structure in aerospace and other industries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bailie JA, Ley RP, Pasricha A (1997) A summary and review of composite laminate design guidelines. Technical report NASA, NAS1–19347. Northrop Grumman-Military Aircraft Systems Division Bailie JA, Ley RP, Pasricha A (1997) A summary and review of composite laminate design guidelines. Technical report NASA, NAS1–19347. Northrop Grumman-Military Aircraft Systems Division
go back to reference Baker AA, Dutton SE, Kelly DW (2004) Composite materials for aircraft structures, 2nd edn. American Institute of Aeronautics and Astronautics Baker AA, Dutton SE, Kelly DW (2004) Composite materials for aircraft structures, 2nd edn. American Institute of Aeronautics and Astronautics
go back to reference Bakis CE, Bank LC, Brown VL, Cosenza E, Davalos JF, Lesko JJ, Machida A, Rizkalla SH, Triantafillou TC (2002) Fiber-reinforced polymer composites for construction-state-of-the-art review. J Compos Constr 6(2):73–87CrossRef Bakis CE, Bank LC, Brown VL, Cosenza E, Davalos JF, Lesko JJ, Machida A, Rizkalla SH, Triantafillou TC (2002) Fiber-reinforced polymer composites for construction-state-of-the-art review. J Compos Constr 6(2):73–87CrossRef
go back to reference Bendsoe MP (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1(4):193–202CrossRef Bendsoe MP (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1(4):193–202CrossRef
go back to reference Bendsøe M, Sigmund O (2003) Topology optimization-Theory, Methods and Applications, 2nd edn. Springer-Verlag, Berlin HeidelbergMATH Bendsøe M, Sigmund O (2003) Topology optimization-Theory, Methods and Applications, 2nd edn. Springer-Verlag, Berlin HeidelbergMATH
go back to reference Blasques JP (2014) Multi-material topology optimization of laminated composite beams with eigenfrequency constraints. Compos Struct 111:45–55CrossRef Blasques JP (2014) Multi-material topology optimization of laminated composite beams with eigenfrequency constraints. Compos Struct 111:45–55CrossRef
go back to reference Blasques J, Lazarov B (2012) User's manual for BECAS: a cross section analysis tool for anisotropic and inhomogeneous beam sections of arbitrary geometry. Risø DTU–National Laboratory for Sustainable Energy Blasques J, Lazarov B (2012) User's manual for BECAS: a cross section analysis tool for anisotropic and inhomogeneous beam sections of arbitrary geometry. Risø DTU–National Laboratory for Sustainable Energy
go back to reference Blasques JP, Stolpe M (2011) Maximum stiffness and minimum weight optimization of laminated composite beams using continuous fiber angles. Struct Multidiscip Optim 43(4):573–588CrossRefMATH Blasques JP, Stolpe M (2011) Maximum stiffness and minimum weight optimization of laminated composite beams using continuous fiber angles. Struct Multidiscip Optim 43(4):573–588CrossRefMATH
go back to reference Blasques JP, Stolpe M (2012) Multi-material topology optimization of laminated composite beam cross sections. Compos Struct 94(11):3278–3289CrossRef Blasques JP, Stolpe M (2012) Multi-material topology optimization of laminated composite beam cross sections. Compos Struct 94(11):3278–3289CrossRef
go back to reference Bruyneel M (2011) SFP - a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multidiscip Optim 43(1):17–27CrossRef Bruyneel M (2011) SFP - a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct Multidiscip Optim 43(1):17–27CrossRef
go back to reference Bruyneel M, Beghin C, Craveur G, Grihon S, Sosonkina M (2012) Stacking sequence optimization for constant stiffness laminates based on a continuous optimization approach. Struct Multidiscip Optim 46(6):783–794CrossRef Bruyneel M, Beghin C, Craveur G, Grihon S, Sosonkina M (2012) Stacking sequence optimization for constant stiffness laminates based on a continuous optimization approach. Struct Multidiscip Optim 46(6):783–794CrossRef
go back to reference Costin DP, Wang BP (1993) Optimum design of a composite structure with manufacturing constraints. Thin-Walled Struct 17(3):185–202CrossRef Costin DP, Wang BP (1993) Optimum design of a composite structure with manufacturing constraints. Thin-Walled Struct 17(3):185–202CrossRef
go back to reference Deng JD, Yan J, Cheng GD (2013) Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct Multidiscip Optim 47(4):583–597MathSciNetCrossRefMATH Deng JD, Yan J, Cheng GD (2013) Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct Multidiscip Optim 47(4):583–597MathSciNetCrossRefMATH
go back to reference Duan ZY, Yan J, Zhao GZ (2014) Integrated optimization of the material and structure of composites based on the Heaviside penalization of discrete material model. Struct Multidiscip Optim 51(3):721–732CrossRef Duan ZY, Yan J, Zhao GZ (2014) Integrated optimization of the material and structure of composites based on the Heaviside penalization of discrete material model. Struct Multidiscip Optim 51(3):721–732CrossRef
go back to reference Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: A review. Appl Mech Rev 54(4):331–390CrossRef Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: A review. Appl Mech Rev 54(4):331–390CrossRef
go back to reference Ferreira RTL, Rodrigues HC, Guedes J, Hernandes JA (2013) Hierarchical optimization of laminated fiber reinforced composites. Compos Struct 107:246–259CrossRef Ferreira RTL, Rodrigues HC, Guedes J, Hernandes JA (2013) Hierarchical optimization of laminated fiber reinforced composites. Compos Struct 107:246–259CrossRef
go back to reference Fletcher R, Leyffer S, Toint PL (1998) On the global convergence of an SLP-filter algorithm. Numerical Analysis Report NA/183, University of Dundee, UK, August Fletcher R, Leyffer S, Toint PL (1998) On the global convergence of an SLP-filter algorithm. Numerical Analysis Report NA/183, University of Dundee, UK, August
go back to reference Gao T, Zhang W, Duysinx P (2012) A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int J Numer Methods Eng 91(1):98–114CrossRefMATH Gao T, Zhang W, Duysinx P (2012) A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int J Numer Methods Eng 91(1):98–114CrossRefMATH
go back to reference Gao T, Zhang WH, Duysinx P (2013) Simultaneous design of structural layout and discrete fiber orientation using bi-value coding parameterization and volume constraint. Struct Multidiscip Optim 48(6):1075–1088MathSciNetCrossRef Gao T, Zhang WH, Duysinx P (2013) Simultaneous design of structural layout and discrete fiber orientation using bi-value coding parameterization and volume constraint. Struct Multidiscip Optim 48(6):1075–1088MathSciNetCrossRef
go back to reference Ghiasi H, Pasini D, Lessard L (2009) Optimum stacking sequence design of composite materials Part I: Constant stiffness design. Compos Struct 90(1):1–11CrossRef Ghiasi H, Pasini D, Lessard L (2009) Optimum stacking sequence design of composite materials Part I: Constant stiffness design. Compos Struct 90(1):1–11CrossRef
go back to reference Ghiasi H, Fayazbakhsh K, Pasini D, Lessard L (2010) Optimum stacking sequence design of composite materials Part II: Variable stiffness design. Compos Struct 93(1):1–13CrossRef Ghiasi H, Fayazbakhsh K, Pasini D, Lessard L (2010) Optimum stacking sequence design of composite materials Part II: Variable stiffness design. Compos Struct 93(1):1–13CrossRef
go back to reference Gomes FA, Senne TA (2011) An SLP algorithm and its application to topology optimization. Comput Appl Math 30(1):53–89MathSciNetMATH Gomes FA, Senne TA (2011) An SLP algorithm and its application to topology optimization. Comput Appl Math 30(1):53–89MathSciNetMATH
go back to reference Hvejsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43(6):811–825CrossRefMATH Hvejsel CF, Lund E (2011) Material interpolation schemes for unified topology and multi-material optimization. Struct Multidiscip Optim 43(6):811–825CrossRefMATH
go back to reference Hvejsel CF, Lund E, Stolpe M (2011) Optimization strategies for discrete multi-material stiffness optimization. Struct Multidiscip Optim 44(2):149–163CrossRef Hvejsel CF, Lund E, Stolpe M (2011) Optimization strategies for discrete multi-material stiffness optimization. Struct Multidiscip Optim 44(2):149–163CrossRef
go back to reference Ibrahim S, Polyzois D, Hassan S (2000) Development of glass fiber reinforced plastic poles for transmission and distribution lines. Can J Civ Eng 27(5):850–858CrossRef Ibrahim S, Polyzois D, Hassan S (2000) Development of glass fiber reinforced plastic poles for transmission and distribution lines. Can J Civ Eng 27(5):850–858CrossRef
go back to reference Irisarri FX, Lasseigne A, Leroy FH, Riche RL (2014) Optimal design of laminated composite structures with ply drops using stacking sequence tables. Compos Struct 107:559–569CrossRef Irisarri FX, Lasseigne A, Leroy FH, Riche RL (2014) Optimal design of laminated composite structures with ply drops using stacking sequence tables. Compos Struct 107:559–569CrossRef
go back to reference Kassapoglou C (2013) Design and analysis of composite structures: with applications to aerospace structures, 2nd edn. Sons, John Wiley &CrossRef Kassapoglou C (2013) Design and analysis of composite structures: with applications to aerospace structures, 2nd edn. Sons, John Wiley &CrossRef
go back to reference Liu L, Yan J, Cheng GD (2008) Optimum structure with homogeneous optimum truss-like material. Comput Struct 86(13):1417–1425CrossRef Liu L, Yan J, Cheng GD (2008) Optimum structure with homogeneous optimum truss-like material. Comput Struct 86(13):1417–1425CrossRef
go back to reference Liu DZ, Toroporov VV, Querin OM, David CB (2011) Bilevel optimization of blended composite wing panels. J Aircr 48(1):107–118CrossRef Liu DZ, Toroporov VV, Querin OM, David CB (2011) Bilevel optimization of blended composite wing panels. J Aircr 48(1):107–118CrossRef
go back to reference Lund E (1994) Finite element based design sensitivity analysis and optimization. Institute of Mechanical Engineering, Aalborg University, Denmark Lund E (1994) Finite element based design sensitivity analysis and optimization. Institute of Mechanical Engineering, Aalborg University, Denmark
go back to reference Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91(2):158–167CrossRef Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91(2):158–167CrossRef
go back to reference Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124CrossRefMATH Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124CrossRefMATH
go back to reference Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing, and design. CRC press Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing, and design. CRC press
go back to reference Manne PM, Tsai SW (1998) Design optimization of composite plates: Part II—structural optimization by plydrop tapering. J Compos Mater 32(6):572–598CrossRef Manne PM, Tsai SW (1998) Design optimization of composite plates: Part II—structural optimization by plydrop tapering. J Compos Mater 32(6):572–598CrossRef
go back to reference Mehrotra S (1992) On the implementation of a primal-dual interior point method. SIAM J Optim 2(4):575–601 Mehrotra S (1992) On the implementation of a primal-dual interior point method. SIAM J Optim 2(4):575–601
go back to reference Niu B, Yan J, Cheng GD (2009) Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct Multidiscip Optim 39(2):115–132CrossRef Niu B, Yan J, Cheng GD (2009) Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct Multidiscip Optim 39(2):115–132CrossRef
go back to reference Niu B, Olhoff N, Lund E, Cheng GD (2010) Discrete material optimization of vibrating laminated composite plates for minimum sound radiation. Int J Solids Struct 47(16):2097–2114CrossRefMATH Niu B, Olhoff N, Lund E, Cheng GD (2010) Discrete material optimization of vibrating laminated composite plates for minimum sound radiation. Int J Solids Struct 47(16):2097–2114CrossRefMATH
go back to reference Rodrigues H, Guedes JM, Bendsoe M (2002) Hierarchical optimization of material and structure. Struct Multidiscip Optim 24(1):1–10CrossRef Rodrigues H, Guedes JM, Bendsoe M (2002) Hierarchical optimization of material and structure. Struct Multidiscip Optim 24(1):1–10CrossRef
go back to reference Schutze R (1997) Lightweight carbon fibre rods and truss structures. Mater Des 18(4–6):231–238CrossRef Schutze R (1997) Lightweight carbon fibre rods and truss structures. Mater Des 18(4–6):231–238CrossRef
go back to reference Seresta O, Gurdal Z, Adams DB, Watson LT (2007) Optimal design of composite wing structures with blended laminates. Compos Part B 38(4):469–480CrossRef Seresta O, Gurdal Z, Adams DB, Watson LT (2007) Optimal design of composite wing structures with blended laminates. Compos Part B 38(4):469–480CrossRef
go back to reference Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNetCrossRef Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNetCrossRef
go back to reference Sørensen SN, Lund E (2013) Topology and thickness optimization of laminated composites including manufacturing constraints. Struct Multidiscip Optim 48(2):249–265MathSciNetCrossRef Sørensen SN, Lund E (2013) Topology and thickness optimization of laminated composites including manufacturing constraints. Struct Multidiscip Optim 48(2):249–265MathSciNetCrossRef
go back to reference Sørensen SN, Sørensen R, Lund E (2014) DMTO–a method for discrete material and thickness optimization of laminated composite structures. Struct Multidiscip Optim 50(1):25–47CrossRef Sørensen SN, Sørensen R, Lund E (2014) DMTO–a method for discrete material and thickness optimization of laminated composite structures. Struct Multidiscip Optim 50(1):25–47CrossRef
go back to reference Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027CrossRefMATH Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027CrossRefMATH
go back to reference Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124CrossRef Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124CrossRef
go back to reference Wang BP, Costin DP (1992) Optimum design of a composite structure with three types of manufacturing constraints. AIAA J 30(6):1667–1669CrossRef Wang BP, Costin DP (1992) Optimum design of a composite structure with three types of manufacturing constraints. AIAA J 30(6):1667–1669CrossRef
go back to reference Yan J, Hu WB, Wang ZH, Duan ZY (2014) Size effect of lattice material and minimum weight design. Acta Mech Sinica 30(2):191–197CrossRefMATH Yan J, Hu WB, Wang ZH, Duan ZY (2014) Size effect of lattice material and minimum weight design. Acta Mech Sinica 30(2):191–197CrossRefMATH
go back to reference Yan J, Yang SX, Duan ZY, Yang CQ (2015a) Minimum compliance optimization of a thermoelastic lattice structure with size-coupled effects. J Therm Stresses 38(3):338–357CrossRef Yan J, Yang SX, Duan ZY, Yang CQ (2015a) Minimum compliance optimization of a thermoelastic lattice structure with size-coupled effects. J Therm Stresses 38(3):338–357CrossRef
go back to reference Yan J, Hu WB, Duan ZY (2015b) Structure/material concurrent optimization of lattice materials based on extended multiscale finite element method. Int J Multiscale Comput Eng 13(1):73–90CrossRef Yan J, Hu WB, Duan ZY (2015b) Structure/material concurrent optimization of lattice materials based on extended multiscale finite element method. Int J Multiscale Comput Eng 13(1):73–90CrossRef
go back to reference Zhang Y (1998) Solving large-scale linear programs by interior-point methods under the Matlab environment. Optim Methods Softw 10(1):1–31 Zhang Y (1998) Solving large-scale linear programs by interior-point methods under the Matlab environment. Optim Methods Softw 10(1):1–31
Metadata
Title
Concurrent multi-scale design optimization of composite frames with manufacturing constraints
Authors
Jun Yan
Zunyi Duan
Erik Lund
Jingyuan Wang
Publication date
11-07-2017
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 3/2017
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-017-1750-0

Other articles of this Issue 3/2017

Structural and Multidisciplinary Optimization 3/2017 Go to the issue

Premium Partners