Skip to main content
Top
Published in: Acta Mechanica Sinica 2/2018

22-09-2017 | Research Paper

Concurrent topology optimization for minimization of total mass considering load-carrying capabilities and thermal insulation simultaneously

Authors: Kai Long, Xuan Wang, Xianguang Gu

Published in: Acta Mechanica Sinica | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present work introduces a novel concurrent optimization formulation to meet the requirements of lightweight design and various constraints simultaneously. Nodal displacement of macrostructure and effective thermal conductivity of microstructure are regarded as the constraint functions, which means taking into account both the load-carrying capabilities and the thermal insulation properties. The effective properties of porous material derived from numerical homogenization are used for macrostructural analysis. Meanwhile, displacement vectors of macrostructures from original and adjoint load cases are used for sensitivity analysis of the microstructure. Design variables in the form of reciprocal functions of relative densities are introduced and used for linearization of the constraint function. The objective function of total mass is approximately expressed by the second order Taylor series expansion. Then, the proposed concurrent optimization problem is solved using a sequential quadratic programming algorithm, by splitting into a series of sub-problems in the form of the quadratic program. Finally, several numerical examples are presented to validate the effectiveness of the proposed optimization method. The various effects including initial designs, prescribed limits of nodal displacement, and effective thermal conductivity on optimized designs are also investigated. An amount of optimized macrostructures and their corresponding microstructures are achieved.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)MathSciNetCrossRefMATH Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)MathSciNetCrossRefMATH
2.
go back to reference Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989)CrossRef Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989)CrossRef
3.
go back to reference Zhou, M., Rozvany, G.I.N.: The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89, 309–336 (1991)CrossRef Zhou, M., Rozvany, G.I.N.: The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89, 309–336 (1991)CrossRef
4.
go back to reference Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49, 885–896 (1993)CrossRef Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49, 885–896 (1993)CrossRef
5.
go back to reference Huang, X., Xie, Y.M.: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem. Anal. Des. 43, 1039–1049 (2007)CrossRef Huang, X., Xie, Y.M.: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem. Anal. Des. 43, 1039–1049 (2007)CrossRef
6.
go back to reference Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003)MathSciNetCrossRefMATH Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003)MathSciNetCrossRefMATH
7.
go back to reference Sethian, J.A., Wiegmann, A.: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163, 489–528 (2000)MathSciNetCrossRefMATH Sethian, J.A., Wiegmann, A.: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163, 489–528 (2000)MathSciNetCrossRefMATH
8.
go back to reference Allaire, G., Jouve, F., Toader, A.M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194, 363–393 (2004)MathSciNetCrossRefMATH Allaire, G., Jouve, F., Toader, A.M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194, 363–393 (2004)MathSciNetCrossRefMATH
9.
go back to reference Zhou, S., Wang, M.Y.: Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct. Multidiscip. Optim. 33, 89 (2007)MathSciNetCrossRefMATH Zhou, S., Wang, M.Y.: Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct. Multidiscip. Optim. 33, 89 (2007)MathSciNetCrossRefMATH
10.
go back to reference Guo, X., Zhang, W., Zhong, W.: Doing topology optimization explicitly and geometricallyła new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014)CrossRef Guo, X., Zhang, W., Zhong, W.: Doing topology optimization explicitly and geometricallyła new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014)CrossRef
11.
go back to reference Guo, X., Zhang, W., Zhang, J., et al.: Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput. Methods Appl. Mech. Eng. 310, 711–748 (2016)MathSciNetCrossRef Guo, X., Zhang, W., Zhang, J., et al.: Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput. Methods Appl. Mech. Eng. 310, 711–748 (2016)MathSciNetCrossRef
12.
go back to reference Zhang, W., Zhang, J., Guo, X.: Lagrangian description based topology optimization—a revival of shape optimization. J. Appl. Mech. 83, 041010 (2016)CrossRef Zhang, W., Zhang, J., Guo, X.: Lagrangian description based topology optimization—a revival of shape optimization. J. Appl. Mech. 83, 041010 (2016)CrossRef
13.
go back to reference Zhang, W., Yang, W., Zhou, J., et al.: Structural topology optimization through explicit boundary evolution. J. Appl. Mech. 84, 011011 (2016)CrossRef Zhang, W., Yang, W., Zhou, J., et al.: Structural topology optimization through explicit boundary evolution. J. Appl. Mech. 84, 011011 (2016)CrossRef
14.
go back to reference Zhang, W., Chen, J., Zhu, X., et al.: Explicit three dimensional topology optimization via moving morphable void (MMV) approach. Comput. Methods Appl. Mech. Eng. 322, 590–614 (2017)MathSciNetCrossRef Zhang, W., Chen, J., Zhu, X., et al.: Explicit three dimensional topology optimization via moving morphable void (MMV) approach. Comput. Methods Appl. Mech. Eng. 322, 590–614 (2017)MathSciNetCrossRef
15.
go back to reference Guo, X., Zhou, J., Zhang, W., et al.: Self-supporting structure design in additive manufacturing through explicit topology optimization. Comput. Methods Appl. Mech. Eng. 323, 27–63 (2017) Guo, X., Zhou, J., Zhang, W., et al.: Self-supporting structure design in additive manufacturing through explicit topology optimization. Comput. Methods Appl. Mech. Eng. 323, 27–63 (2017)
16.
go back to reference Eschenauer, H.A., Olhoff, N.: Topology optimization of continuum structures: a review. J. Appl. Mech. Appl. Mech. Rev. 54, 331–390 (2001)CrossRef Eschenauer, H.A., Olhoff, N.: Topology optimization of continuum structures: a review. J. Appl. Mech. Appl. Mech. Rev. 54, 331–390 (2001)CrossRef
17.
go back to reference Rozvany, G.I.N.: A critical review of established methods of structural topology optimization. Struct. Multidiscip. Optim. 37, 217–237 (2009)MathSciNetCrossRefMATH Rozvany, G.I.N.: A critical review of established methods of structural topology optimization. Struct. Multidiscip. Optim. 37, 217–237 (2009)MathSciNetCrossRefMATH
18.
19.
go back to reference Sigmund, O.: Materials with prescribed constitutive parameters: an inverse homogenization problem. Int. J. Solids Struct. 31, 2313–2329 (1994)MathSciNetCrossRefMATH Sigmund, O.: Materials with prescribed constitutive parameters: an inverse homogenization problem. Int. J. Solids Struct. 31, 2313–2329 (1994)MathSciNetCrossRefMATH
20.
go back to reference Sigmund, O.: Tailoring materials with prescribed elastic properties. Mech. Mater. 20, 351–368 (1995)CrossRef Sigmund, O.: Tailoring materials with prescribed elastic properties. Mech. Mater. 20, 351–368 (1995)CrossRef
21.
go back to reference Clausen, A., Wang, F., Jensen, J.S., et al.: Topology optimized architectures with programmable Poisson’s ratio over large deformations. Adv. Mater. 27, 5523–5527 (2015)CrossRef Clausen, A., Wang, F., Jensen, J.S., et al.: Topology optimized architectures with programmable Poisson’s ratio over large deformations. Adv. Mater. 27, 5523–5527 (2015)CrossRef
22.
go back to reference Xie, Y.M., Yang, X., Shen, J., et al.: Designing orthotropic materials for negative or zero compressibility. Int. J. Solids Struct. 51, 4038–4051 (2014)CrossRef Xie, Y.M., Yang, X., Shen, J., et al.: Designing orthotropic materials for negative or zero compressibility. Int. J. Solids Struct. 51, 4038–4051 (2014)CrossRef
23.
go back to reference Wang, X., Xu, S., Zhou, S., et al.: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83, 127–141 (2016)CrossRef Wang, X., Xu, S., Zhou, S., et al.: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83, 127–141 (2016)CrossRef
24.
go back to reference Rodrigues, H., Guedes, J.M., Bendsoe, M.P.: Hierarchical optimization of material and structure. Struct. Multidiscip. Optim. 24, 1–10 (2002)CrossRef Rodrigues, H., Guedes, J.M., Bendsoe, M.P.: Hierarchical optimization of material and structure. Struct. Multidiscip. Optim. 24, 1–10 (2002)CrossRef
25.
go back to reference Coelho, P.G., Fernandes, P.R., Guedes, J.M., et al.: A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct. Multidiscip. Optim. 35, 107–115 (2008)CrossRef Coelho, P.G., Fernandes, P.R., Guedes, J.M., et al.: A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct. Multidiscip. Optim. 35, 107–115 (2008)CrossRef
26.
go back to reference Liu, L., Yan, J., Cheng, G.: Optimum structure with homogeneous optimum truss-like material. Comput. Struct. 86, 1417–1425 (2008)CrossRef Liu, L., Yan, J., Cheng, G.: Optimum structure with homogeneous optimum truss-like material. Comput. Struct. 86, 1417–1425 (2008)CrossRef
27.
go back to reference Niu, B., Yan, J., Cheng, G.: Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct. Multidiscip. Optim. 39, 115–132 (2009)CrossRef Niu, B., Yan, J., Cheng, G.: Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct. Multidiscip. Optim. 39, 115–132 (2009)CrossRef
28.
go back to reference Deng, J., Yan, J., Cheng, G.: Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct. Multidiscip. Optim. 47, 583–597 (2013)MathSciNetCrossRefMATH Deng, J., Yan, J., Cheng, G.: Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct. Multidiscip. Optim. 47, 583–597 (2013)MathSciNetCrossRefMATH
29.
go back to reference Guo, X., Zhao, X., Zhang, W., et al.: Multi-scale robust design and optimization considering load uncertainties. Comput. Methods Appl. Mech. Eng. 283, 994–1009 (2015)MathSciNetCrossRef Guo, X., Zhao, X., Zhang, W., et al.: Multi-scale robust design and optimization considering load uncertainties. Comput. Methods Appl. Mech. Eng. 283, 994–1009 (2015)MathSciNetCrossRef
30.
go back to reference Huang, X., Zhou, S.W., Xie, Y.M.: Topology optimization of microstructures of cellular materials and composites for macrostructures. Comput. Mater. Sci. 67, 397–407 (2013)CrossRef Huang, X., Zhou, S.W., Xie, Y.M.: Topology optimization of microstructures of cellular materials and composites for macrostructures. Comput. Mater. Sci. 67, 397–407 (2013)CrossRef
31.
go back to reference Yan, X., Huang, X., Sun, G., et al.: Two-scale optimal design of structures with thermal insulation materials. Compos. Struct. 120, 358–365 (2015)CrossRef Yan, X., Huang, X., Sun, G., et al.: Two-scale optimal design of structures with thermal insulation materials. Compos. Struct. 120, 358–365 (2015)CrossRef
32.
go back to reference Liu, Q., Chan, R., Huang, X.: Concurrent topology optimization of macrostructures and material microstructures for natural frequency. Mater. Des. 106, 380–390 (2016)CrossRef Liu, Q., Chan, R., Huang, X.: Concurrent topology optimization of macrostructures and material microstructures for natural frequency. Mater. Des. 106, 380–390 (2016)CrossRef
33.
go back to reference Xu, B., Jiang, J.S., Xie, Y.M.: Concurrent design of composite macrostructure and multi-phase material microstructure for minimum dynamic compliance. Compos. Struct. 128, 221–233 (2015)CrossRef Xu, B., Jiang, J.S., Xie, Y.M.: Concurrent design of composite macrostructure and multi-phase material microstructure for minimum dynamic compliance. Compos. Struct. 128, 221–233 (2015)CrossRef
34.
go back to reference Xu, B., Xie, Y.M.: Concurrent design of composite macrostructure and cellular microstructure under random excitations. Compos. Struct. 123, 65–77 (2015)CrossRef Xu, B., Xie, Y.M.: Concurrent design of composite macrostructure and cellular microstructure under random excitations. Compos. Struct. 123, 65–77 (2015)CrossRef
35.
go back to reference Xu, B., Huang, X., Xie, Y.M.: Two-scale dynamic optimal design of composite structures in the time domain using equivalent static loads. Compos. Struct. 142, 335–345 (2016)CrossRef Xu, B., Huang, X., Xie, Y.M.: Two-scale dynamic optimal design of composite structures in the time domain using equivalent static loads. Compos. Struct. 142, 335–345 (2016)CrossRef
36.
go back to reference Zhang, W., Sun, S.: Scale-related topology optimization of cellular materials and structures. Int. J. Numer. Methods Eng. 68, 993–1011 (2006)CrossRefMATH Zhang, W., Sun, S.: Scale-related topology optimization of cellular materials and structures. Int. J. Numer. Methods Eng. 68, 993–1011 (2006)CrossRefMATH
37.
go back to reference Xia, L., Breitkopf, P.: Concurrent topology optimization design of material and structure within FE\(_2\) nonlinear multiscale analysis framework. Comput. Methods Appl. Mech. Eng. 278, 524–542 (2014)CrossRef Xia, L., Breitkopf, P.: Concurrent topology optimization design of material and structure within FE\(_2\) nonlinear multiscale analysis framework. Comput. Methods Appl. Mech. Eng. 278, 524–542 (2014)CrossRef
38.
go back to reference Xia, L., Breitkopf, P.: Recent advances on topology optimization of multiscale nonlinear structures. Arch. Comput. Methods Eng. 24, 227–249 (2016)MathSciNetCrossRefMATH Xia, L., Breitkopf, P.: Recent advances on topology optimization of multiscale nonlinear structures. Arch. Comput. Methods Eng. 24, 227–249 (2016)MathSciNetCrossRefMATH
39.
go back to reference Jia, J., Cheng, W., Long, K., et al.: Hierarchical design of structures and multiphase material cells. Comput. Struct. 165, 136–144 (2016)CrossRef Jia, J., Cheng, W., Long, K., et al.: Hierarchical design of structures and multiphase material cells. Comput. Struct. 165, 136–144 (2016)CrossRef
40.
go back to reference Long, K., Han, D., Gu, X.: Concurrent topology optimization of composite macrostructure and microstructure constructed by constituent phases of distinct Poisson’s ratios for maximum frequency. Comput. Mater. Sci. 129, 194–201 (2017)CrossRef Long, K., Han, D., Gu, X.: Concurrent topology optimization of composite macrostructure and microstructure constructed by constituent phases of distinct Poisson’s ratios for maximum frequency. Comput. Mater. Sci. 129, 194–201 (2017)CrossRef
41.
go back to reference Chen, W., Tong, L., Liu, S.: Concurrent topology design of structure and material using a two-scale topology optimization. Comput. Struct. 178, 119–128 (2017)CrossRef Chen, W., Tong, L., Liu, S.: Concurrent topology design of structure and material using a two-scale topology optimization. Comput. Struct. 178, 119–128 (2017)CrossRef
42.
go back to reference Sui, Y., Peng, X.: The ICM method with objective function transformed by variable discrete condition for continuum structure. Acta Mech. Sin. 22, 68–75 (2006)MathSciNetCrossRefMATH Sui, Y., Peng, X.: The ICM method with objective function transformed by variable discrete condition for continuum structure. Acta Mech. Sin. 22, 68–75 (2006)MathSciNetCrossRefMATH
43.
go back to reference Sui, Y., Yang, D.: A new method for structural topological optimization based on the concept of independent continuous variables and smooth model. Acta Mech. Sin. 14, 179–185 (1998)CrossRef Sui, Y., Yang, D.: A new method for structural topological optimization based on the concept of independent continuous variables and smooth model. Acta Mech. Sin. 14, 179–185 (1998)CrossRef
44.
go back to reference Sui, Y.: Modelling, Transformation and Optimizationł New Developments of Structural Synthesis Method. Dalian University of Technology Press, Dalian (1996) Sui, Y.: Modelling, Transformation and Optimizationł New Developments of Structural Synthesis Method. Dalian University of Technology Press, Dalian (1996)
45.
go back to reference Andreassen, E., Andreasen, C.S.: How to determine composite material properties using numerical homogenization. Comput. Mater. Sci. 83, 488–495 (2014)CrossRef Andreassen, E., Andreasen, C.S.: How to determine composite material properties using numerical homogenization. Comput. Mater. Sci. 83, 488–495 (2014)CrossRef
46.
go back to reference Zuo, Z.H., Xie, Y.M.: Evolutionary topology optimization of continuum structures with a global displacement control. Comput. Aided Des. 56, 58–67 (2014)CrossRef Zuo, Z.H., Xie, Y.M.: Evolutionary topology optimization of continuum structures with a global displacement control. Comput. Aided Des. 56, 58–67 (2014)CrossRef
47.
go back to reference Lazarov, B.S., Sigmund, O.: Filters in topology optimization based on Helmholtz-type differential equations. Int. J. Numer. Methods Eng. 86, 765–781 (2011)MathSciNetCrossRefMATH Lazarov, B.S., Sigmund, O.: Filters in topology optimization based on Helmholtz-type differential equations. Int. J. Numer. Methods Eng. 86, 765–781 (2011)MathSciNetCrossRefMATH
48.
go back to reference Amstutz, S., Giusti, S.M., Novotny, A.A., et al.: Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures. Int. J. Numer. Methods Eng. 84, 733–756 (2010)MathSciNetCrossRefMATH Amstutz, S., Giusti, S.M., Novotny, A.A., et al.: Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures. Int. J. Numer. Methods Eng. 84, 733–756 (2010)MathSciNetCrossRefMATH
49.
go back to reference Svanberg, K.: The method of moving asymptotes-a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)MathSciNetCrossRefMATH Svanberg, K.: The method of moving asymptotes-a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)MathSciNetCrossRefMATH
Metadata
Title
Concurrent topology optimization for minimization of total mass considering load-carrying capabilities and thermal insulation simultaneously
Authors
Kai Long
Xuan Wang
Xianguang Gu
Publication date
22-09-2017
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 2/2018
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-017-0708-1

Other articles of this Issue 2/2018

Acta Mechanica Sinica 2/2018 Go to the issue

Premium Partners