Skip to main content
Top
Published in: Cellulose 7/2018

10-05-2018 | Original Paper

Conductive and durable CNT-cotton ring spun yarns

Authors: Mengyun Yang, Chiyu Fu, Zhigang Xia, Deshan Cheng, Guangming Cai, Bin Tang, Xungai Wang

Published in: Cellulose | Issue 7/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A facile and original method was developed to fabricate flexible conductive yarns using cotton roving and carbon nanotubes (CNTs). The CNTs were assembled to cotton roving and then wrapped around by fibers through twisting during ring spinning. The obtained CNT treated cotton yarns (CNT-CYs) showed great electrical conductivity and durability properties. The CNT-CYs were analyzed using scanning electron microscopy and Raman scattering spectroscopy. The electrical conductivity, mechanical property and flexibility of CNT-CYs were investigated. The results show that electrical resistance of roving, twist and linear density of yarn affect the electrical conductivity of CNT-CYs. Combination with CNTs increased the breaking strength of cotton yarns. The electrical resistance of CNT-CYs was relatively stable during stretching and human motions. Moreover, no obvious changes in electrical resistance were found after CNT-CYs were bent 100 times. The CNT-CYs possessed good durability to repeated washing and abrasion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792CrossRefPubMed Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792CrossRefPubMed
go back to reference Cai G, Xu Z, Yang M, Tang B, Wang X (2017a) Functionalization of cotton fabrics through thermal reduction of graphene oxide. Appl Surf Sci 393:441–448CrossRef Cai G, Xu Z, Yang M, Tang B, Wang X (2017a) Functionalization of cotton fabrics through thermal reduction of graphene oxide. Appl Surf Sci 393:441–448CrossRef
go back to reference Cai G, Yang M, Xu Z, Liu J, Tang B, Wang X (2017b) Flexible and wearable strain sensing fabrics. Chem Eng J 325:396–403CrossRef Cai G, Yang M, Xu Z, Liu J, Tang B, Wang X (2017b) Flexible and wearable strain sensing fabrics. Chem Eng J 325:396–403CrossRef
go back to reference Choi GR et al (2016) Strain sensing characteristics of rubbery carbon nanotube composite for flexible sensors. J Nanosci Nanotechnol 16:1607–1611CrossRefPubMed Choi GR et al (2016) Strain sensing characteristics of rubbery carbon nanotube composite for flexible sensors. J Nanosci Nanotechnol 16:1607–1611CrossRefPubMed
go back to reference Cooper CA, Young RJ, Halsall M (2001) Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos Part A Appl Sci Manuf 32:401–411CrossRef Cooper CA, Young RJ, Halsall M (2001) Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos Part A Appl Sci Manuf 32:401–411CrossRef
go back to reference Deng F, Lu W, Zhao H, Zhu Y, Kim B-S, Chou T-W (2011) The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite. Carbon 49:1752–1757CrossRef Deng F, Lu W, Zhao H, Zhu Y, Kim B-S, Chou T-W (2011) The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite. Carbon 49:1752–1757CrossRef
go back to reference Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99CrossRef Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99CrossRef
go back to reference Egami Y, Suzuki K, Tanaka T, Yasuhara T, Higuchi E, Inoue H (2011) Preparation and characterization of conductive fabrics coated uniformly with polypyrrole nanoparticles. Synth Met 161:219–224CrossRef Egami Y, Suzuki K, Tanaka T, Yasuhara T, Higuchi E, Inoue H (2011) Preparation and characterization of conductive fabrics coated uniformly with polypyrrole nanoparticles. Synth Met 161:219–224CrossRef
go back to reference Gao Z, Song N, Zhang Y, Li X (2015) Cotton-textile-enabled, flexible lithium-ion batteries with enhanced capacity and extended lifespan. Nano Lett 15:8194–8203CrossRefPubMed Gao Z, Song N, Zhang Y, Li X (2015) Cotton-textile-enabled, flexible lithium-ion batteries with enhanced capacity and extended lifespan. Nano Lett 15:8194–8203CrossRefPubMed
go back to reference Gao Z, Bumgardner C, Song N, Zhang Y, Li J, Li X (2016) Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication. Nat Commun 7:11586CrossRefPubMedPubMedCentral Gao Z, Bumgardner C, Song N, Zhang Y, Li J, Li X (2016) Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication. Nat Commun 7:11586CrossRefPubMedPubMedCentral
go back to reference Guan X, Zheng G, Dai K, Liu C, Yan X, Shen C, Guo Z (2016) Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl Mater Interfaces 8:14150–14159CrossRefPubMed Guan X, Zheng G, Dai K, Liu C, Yan X, Shen C, Guo Z (2016) Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl Mater Interfaces 8:14150–14159CrossRefPubMed
go back to reference Jiang K, Li Q, Fan S (2002) Nanotechnology: spinning continuous carbon nanotube yarns. Nature 419:801CrossRefPubMed Jiang K, Li Q, Fan S (2002) Nanotechnology: spinning continuous carbon nanotube yarns. Nature 419:801CrossRefPubMed
go back to reference Lee T-W, Lee S-E, Jeong YG (2016) Carbon nanotube/cellulose papers with high performance in electric heating and electromagnetic interference shielding. Compos Sci Technol 131:77–87CrossRef Lee T-W, Lee S-E, Jeong YG (2016) Carbon nanotube/cellulose papers with high performance in electric heating and electromagnetic interference shielding. Compos Sci Technol 131:77–87CrossRef
go back to reference Li Y, Samad YA, Liao K (2015) From cotton to wearable pressure sensor. J Mater Chem A 3:2181–2187CrossRef Li Y, Samad YA, Liao K (2015) From cotton to wearable pressure sensor. J Mater Chem A 3:2181–2187CrossRef
go back to reference Li L, Fan T, Hu R, Liu Y, Lu M (2017a) Surface micro-dissolution process for embedding carbon nanotubes on cotton fabric as a conductive textile. Cellulose 24:1121–1128CrossRef Li L, Fan T, Hu R, Liu Y, Lu M (2017a) Surface micro-dissolution process for embedding carbon nanotubes on cotton fabric as a conductive textile. Cellulose 24:1121–1128CrossRef
go back to reference Li Y, Li Q, Zhang C, Cai P, Bai N, Xu X (2017b) Intelligent self-healing superhydrophobic modification of cotton fabrics via surface-initiated ARGET ATRP of styrene. Chem Eng J 323:134–142CrossRef Li Y, Li Q, Zhang C, Cai P, Bai N, Xu X (2017b) Intelligent self-healing superhydrophobic modification of cotton fabrics via surface-initiated ARGET ATRP of styrene. Chem Eng J 323:134–142CrossRef
go back to reference Liang G, Zhu L, Xu J, Fang D, Bai Z, Xu W (2013) Investigations of poly (pyrrole)-coated cotton fabrics prepared in blends of anionic and cationic surfactants as flexible electrode. Electrochim Acta 103:9–14CrossRef Liang G, Zhu L, Xu J, Fang D, Bai Z, Xu W (2013) Investigations of poly (pyrrole)-coated cotton fabrics prepared in blends of anionic and cationic surfactants as flexible electrode. Electrochim Acta 103:9–14CrossRef
go back to reference Lima MD et al (2011) Biscrolling nanotube sheets and functional guests into yarns. Science 331:51–55CrossRefPubMed Lima MD et al (2011) Biscrolling nanotube sheets and functional guests into yarns. Science 331:51–55CrossRefPubMed
go back to reference Liu X, Chang H, Li Y, Huck W, Zheng Z (2010) Polyelectrolyte-bridged metal/cotton hierarchical structures for highly durable conductive yarns. ACS Appl Mater Interfaces 2:529–535CrossRefPubMed Liu X, Chang H, Li Y, Huck W, Zheng Z (2010) Polyelectrolyte-bridged metal/cotton hierarchical structures for highly durable conductive yarns. ACS Appl Mater Interfaces 2:529–535CrossRefPubMed
go back to reference Liu C, Cai Z, Zhao Y, Zhao H, Ge F (2016a) Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 23:637–648CrossRef Liu C, Cai Z, Zhao Y, Zhao H, Ge F (2016a) Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 23:637–648CrossRef
go back to reference Liu H et al (2016b) Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale 8:12977–12989CrossRefPubMed Liu H et al (2016b) Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale 8:12977–12989CrossRefPubMed
go back to reference Liu Y, Song T, Jia X, Meng L, Mao X (2017) Gold nanoparticles decorated carbon nanotube probe based immunochromatographic assay on cotton thread. Sens Actuators B 251:1112–1118CrossRef Liu Y, Song T, Jia X, Meng L, Mao X (2017) Gold nanoparticles decorated carbon nanotube probe based immunochromatographic assay on cotton thread. Sens Actuators B 251:1112–1118CrossRef
go back to reference Lou C-W (2005) Process of complex core spun yarn containing a metal wire. Text Res J 75:466–473CrossRef Lou C-W (2005) Process of complex core spun yarn containing a metal wire. Text Res J 75:466–473CrossRef
go back to reference Makowski T, Kowalczyk D, Fortuniak W, Jeziorska D, Brzezinski S, Tracz A (2014) Superhydrophobic properties of cotton woven fabrics with conducting 3D networks of multiwall carbon nanotubes, MWCNTs. Cellulose 21:4659–4670CrossRef Makowski T, Kowalczyk D, Fortuniak W, Jeziorska D, Brzezinski S, Tracz A (2014) Superhydrophobic properties of cotton woven fabrics with conducting 3D networks of multiwall carbon nanotubes, MWCNTs. Cellulose 21:4659–4670CrossRef
go back to reference Pang Y et al (2016) Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl Mater Interfaces 8:26458–26462CrossRefPubMed Pang Y et al (2016) Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl Mater Interfaces 8:26458–26462CrossRefPubMed
go back to reference Pu X et al (2016) Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv Mater 28:98–105CrossRefPubMed Pu X et al (2016) Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv Mater 28:98–105CrossRefPubMed
go back to reference Ren J, Wang C, Zhang X, Carey T, Chen K, Yin Y, Torrisi F (2017) Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 111:622–630CrossRef Ren J, Wang C, Zhang X, Carey T, Chen K, Yin Y, Torrisi F (2017) Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 111:622–630CrossRef
go back to reference Soltani P, Johari M (2012) A study on siro-, solo-, compact-, and conventional ring-spun yarns. Part II: yarn strength with relation to physical and structural properties of yarns. J Text Inst 103:921–930CrossRef Soltani P, Johari M (2012) A study on siro-, solo-, compact-, and conventional ring-spun yarns. Part II: yarn strength with relation to physical and structural properties of yarns. J Text Inst 103:921–930CrossRef
go back to reference Tang B, Zhang M, Hou X, Li J, Sun L, Wang X (2012) Coloration of cotton fibers with anisotropic silver nanoparticles. Ind Eng Chem Res 51:12807–12813CrossRef Tang B, Zhang M, Hou X, Li J, Sun L, Wang X (2012) Coloration of cotton fibers with anisotropic silver nanoparticles. Ind Eng Chem Res 51:12807–12813CrossRef
go back to reference Thangakameshwaran N, Santhoskumar A (2014) Cotton fabric dipped in carbon nano tube ink for smart textile applications. J Polym Mater Polym Biomater 63:557–562CrossRef Thangakameshwaran N, Santhoskumar A (2014) Cotton fabric dipped in carbon nano tube ink for smart textile applications. J Polym Mater Polym Biomater 63:557–562CrossRef
go back to reference Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912CrossRef Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912CrossRef
go back to reference Tran C, Humphries W, Smith S, Huynh C, Lucas S (2009) Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process. Carbon 47:2662–2670CrossRef Tran C, Humphries W, Smith S, Huynh C, Lucas S (2009) Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process. Carbon 47:2662–2670CrossRef
go back to reference Wang H et al (2016a) Downsized sheath–core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors. Adv Mater 28:4998–5007CrossRefPubMed Wang H et al (2016a) Downsized sheath–core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors. Adv Mater 28:4998–5007CrossRefPubMed
go back to reference Wang Z et al (2016b) Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl Mater Interfaces 8:24837–24843CrossRefPubMed Wang Z et al (2016b) Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl Mater Interfaces 8:24837–24843CrossRefPubMed
go back to reference Wang N, Xu Z, Zhan P, Dai K, Zheng G, Liu C, Shen C (2017a) A tunable strain sensor based on a carbon nanotubes/electrospun polyamide 6 conductive nanofibrous network embedded into poly(vinyl alcohol) with self-diagnosis capabilities. J Mater Chem C 5:4408–4418CrossRef Wang N, Xu Z, Zhan P, Dai K, Zheng G, Liu C, Shen C (2017a) A tunable strain sensor based on a carbon nanotubes/electrospun polyamide 6 conductive nanofibrous network embedded into poly(vinyl alcohol) with self-diagnosis capabilities. J Mater Chem C 5:4408–4418CrossRef
go back to reference Wei Y, Chen S, Lin Y, Yuan X, Liu L (2016) Silver nanowires coated on cotton for flexible pressure sensors. J Mater Chem C 4:935–943CrossRef Wei Y, Chen S, Lin Y, Yuan X, Liu L (2016) Silver nanowires coated on cotton for flexible pressure sensors. J Mater Chem C 4:935–943CrossRef
go back to reference Weng W, Chen P, He S, Sun X, Peng H (2016) Smart electronic textiles. Angew Chem Int Ed 55:6140–6169CrossRef Weng W, Chen P, He S, Sun X, Peng H (2016) Smart electronic textiles. Angew Chem Int Ed 55:6140–6169CrossRef
go back to reference Xia Z, Xu W (2013) A review of ring staple yarn spinning method development and its trend prediction. J Nat Fibers 10:62–81CrossRef Xia Z, Xu W (2013) A review of ring staple yarn spinning method development and its trend prediction. J Nat Fibers 10:62–81CrossRef
go back to reference Xu P et al (2014) Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv Energy Mater 4:1300759CrossRef Xu P et al (2014) Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv Energy Mater 4:1300759CrossRef
go back to reference Xu Q, Fan L, Yuan Y, Wei C, Bai Z, Xu J (2016) All-solid-state yarn supercapacitors based on hierarchically structured bacterial cellulose nanofiber-coated cotton yarns. Cellulose 23:3987–3997CrossRef Xu Q, Fan L, Yuan Y, Wei C, Bai Z, Xu J (2016) All-solid-state yarn supercapacitors based on hierarchically structured bacterial cellulose nanofiber-coated cotton yarns. Cellulose 23:3987–3997CrossRef
go back to reference Yang L, Li M, Zhang Y, Yi K, Ma J, Liu Y (2014) Synthesis and characterization of polypyrrole nanotubes/multi-walled carbon nanotubes composites with superior electrochemical performance. J Mater Sci Mater Electron 25:1047–1052CrossRef Yang L, Li M, Zhang Y, Yi K, Ma J, Liu Y (2014) Synthesis and characterization of polypyrrole nanotubes/multi-walled carbon nanotubes composites with superior electrochemical performance. J Mater Sci Mater Electron 25:1047–1052CrossRef
go back to reference Ye X, Zhou Q, Jia C, Tang Z, Wan Z, Wu X (2016) A knittable fibriform supercapacitor based on natural cotton thread coated with graphene and carbon nanoparticles. Electrochim Acta 206:155–164CrossRef Ye X, Zhou Q, Jia C, Tang Z, Wan Z, Wu X (2016) A knittable fibriform supercapacitor based on natural cotton thread coated with graphene and carbon nanoparticles. Electrochim Acta 206:155–164CrossRef
go back to reference Yildiz SK, Mutlu R, Alici G (2016) Fabrication and characterisation of highly stretchable elastomeric strain sensors for prosthetic hand applications. Sens Actuators A 247:514–521CrossRef Yildiz SK, Mutlu R, Alici G (2016) Fabrication and characterisation of highly stretchable elastomeric strain sensors for prosthetic hand applications. Sens Actuators A 247:514–521CrossRef
go back to reference Yu D et al (2014a) Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nanotechnol 9:555–562CrossRefPubMed Yu D et al (2014a) Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nanotechnol 9:555–562CrossRefPubMed
go back to reference Yu Y, Yan C, Zheng Z (2014b) Polymer-assisted metal deposition (PAMD): a full-solution strategy for flexible, stretchable, compressible, and wearable metal conductors. Adv Mater 26:5508–5516CrossRefPubMed Yu Y, Yan C, Zheng Z (2014b) Polymer-assisted metal deposition (PAMD): a full-solution strategy for flexible, stretchable, compressible, and wearable metal conductors. Adv Mater 26:5508–5516CrossRefPubMed
go back to reference Yu Y, Zhang L, Yildiz O, Deng H, Zhao C, Bradford P, Zhu Y (2017) Investigation of microcombing parameters in enhancing the properties of carbon nanotube yarns. Mater Des 134:181–187CrossRef Yu Y, Zhang L, Yildiz O, Deng H, Zhao C, Bradford P, Zhu Y (2017) Investigation of microcombing parameters in enhancing the properties of carbon nanotube yarns. Mater Des 134:181–187CrossRef
go back to reference Zahid M, Heredia-Guerrero JA, Athanassiou A, Bayer IS (2017) Robust water repellent treatment for woven cotton fabrics with eco-friendly polymers. Chem Eng J 319:321–332CrossRef Zahid M, Heredia-Guerrero JA, Athanassiou A, Bayer IS (2017) Robust water repellent treatment for woven cotton fabrics with eco-friendly polymers. Chem Eng J 319:321–332CrossRef
go back to reference Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26:5310–5336CrossRefPubMed Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26:5310–5336CrossRefPubMed
go back to reference Zhang H, Cao J, Wu W, Cao Z, Ma H (2016) Layer-by-layer assembly of graphene oxide on viscose fibers for the fabrication of flexible conductive devices. Cellulose 23:3761–3770CrossRef Zhang H, Cao J, Wu W, Cao Z, Ma H (2016) Layer-by-layer assembly of graphene oxide on viscose fibers for the fabrication of flexible conductive devices. Cellulose 23:3761–3770CrossRef
go back to reference Zhao Z, Yan C, Liu Z, Fu X, Peng L, Hu Y, Zheng Z (2016) Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv Mater 28:10267–10274CrossRefPubMed Zhao Z, Yan C, Liu Z, Fu X, Peng L, Hu Y, Zheng Z (2016) Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv Mater 28:10267–10274CrossRefPubMed
go back to reference Zhong W et al (2016) A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability. Nanoscale 8:12105–12112CrossRefPubMed Zhong W et al (2016) A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability. Nanoscale 8:12105–12112CrossRefPubMed
go back to reference Zhu L et al (2014) Cotton fabrics coated with lignosulfonate-doped polypyrrole for flexible supercapacitor electrodes. RSC Adv 4:6261–6266CrossRef Zhu L et al (2014) Cotton fabrics coated with lignosulfonate-doped polypyrrole for flexible supercapacitor electrodes. RSC Adv 4:6261–6266CrossRef
Metadata
Title
Conductive and durable CNT-cotton ring spun yarns
Authors
Mengyun Yang
Chiyu Fu
Zhigang Xia
Deshan Cheng
Guangming Cai
Bin Tang
Xungai Wang
Publication date
10-05-2018
Publisher
Springer Netherlands
Published in
Cellulose / Issue 7/2018
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1839-7

Other articles of this Issue 7/2018

Cellulose 7/2018 Go to the issue