Skip to main content
Top
Published in: Colloid and Polymer Science 2/2014

01-02-2014 | Original Contribution

Constraints in post-synthesis ligand exchange for hybrid organic (MEH-PPV)–inorganic (CdSe) nanocomposites

Authors: Aarti Mehta, Shailesh N. Sharma, Parul Chawla, Suresh Chand

Published in: Colloid and Polymer Science | Issue 2/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For an optimum charge/energy transfer performance of hybrid organic–inorganic colloidal nanocrystals for applications such as photonic devices and solar cells, the determining factors are the distance between the nanocrystal and polymer which greatly depends upon nanocrystal size/nanocrystal ligands. Short chain ligands are preferred to ensure a close contact between the donor and acceptor as a result of the tunnelling probability of the charges and the insulating nature of long alkyl chain molecules. Short distances increase the probability for tunnelling to occur as compared to long distances induced by long alkyl chains of bulky ligands which inhibit tunnelling altogether. The ligands on the as-synthesized nanocrystals can be exchanged for various other ligands to achieve desirable charge/energy transfer properties depending on the bond strength of the ligand on the nanocrystal compared to the replacement ligand. In this work, the constraints involved in post-synthesis ligand exchange process have been evaluated, and these factors have been tuned via wet chemistry to tailor the hybrid material properties via appropriate selection of the nanocrystal capping ligands. It has been found that both oleic acid and oleylamine (OLA)-capped cadmium selenide (CdSe) quantum dots (QDs) as compared with trioctylphosphine oxide (TOPO)-passivated CdSe QDs are of high quality, and they provide better steric stability against coagulation, homogeneity, and photostability to their respective polymer:CdSe nanocomposites. CdSe QDs particularly with OLA capping have relatively smaller surface energies, and thus, lesser quenching capabilities show dominance of photoinduced Forster energy transfer between donors (polymer) and acceptors (CdSe nanocrystals) as compared to charge transfer mechanism as observed in polymer:CdSe (TOPO) composites. It is conjectured that size quantization effects, stereochemical compatibility of ligands (TOPO, oleic acid, and oleyl amine), and polymer MEH-PPV stability greatly influence the photophysics and photochemistry of hybrid polymer–semiconductor nanocomposites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
3.
go back to reference Seo J, Kim WJ, Kim SJ, Lee KS, Cartwright AN, Prasad PN (2009) Appl Phys Lett 94:133302–133304CrossRef Seo J, Kim WJ, Kim SJ, Lee KS, Cartwright AN, Prasad PN (2009) Appl Phys Lett 94:133302–133304CrossRef
4.
go back to reference Peng Y, Song G, Hu X, He G, Chen Z, Xu X, Hu J (2013) Nanoscale Res Lett 8:106–113CrossRef Peng Y, Song G, Hu X, He G, Chen Z, Xu X, Hu J (2013) Nanoscale Res Lett 8:106–113CrossRef
5.
go back to reference Binetti E, Ingrosso C, Striccoli M, Cosma P, Agostiano A, Pataky K, Brugger J, Curri ML (2012) Nanotechnology 23:075701–075709CrossRef Binetti E, Ingrosso C, Striccoli M, Cosma P, Agostiano A, Pataky K, Brugger J, Curri ML (2012) Nanotechnology 23:075701–075709CrossRef
6.
go back to reference Deng S, Lei J, Yao X, Huang Y, Lin D, Ju H (2013) J Mater ChemC 1:299–306 Deng S, Lei J, Yao X, Huang Y, Lin D, Ju H (2013) J Mater ChemC 1:299–306
9.
10.
11.
go back to reference Wang C, Jiang Y, Li G, Zhang Z, Shi J, Li N (2008) J Cryst Growth 310:2890–2894CrossRef Wang C, Jiang Y, Li G, Zhang Z, Shi J, Li N (2008) J Cryst Growth 310:2890–2894CrossRef
12.
go back to reference Liu J, Tanaka T, Sivula K, Alivisatos AP, Fréchet JMJ (2004) J Am Chem Soc 126:6550–6551CrossRef Liu J, Tanaka T, Sivula K, Alivisatos AP, Fréchet JMJ (2004) J Am Chem Soc 126:6550–6551CrossRef
13.
go back to reference Sharma H, Sharma SN, Singh G, Shivaprasad SM (2007) J Nanosci Nanotechnol 7:1953–1959CrossRef Sharma H, Sharma SN, Singh G, Shivaprasad SM (2007) J Nanosci Nanotechnol 7:1953–1959CrossRef
14.
go back to reference Kumari K, Chand S, Kumar P, Sharma SN, Vankar VD, Kumar V (2008) Appl Phys Lett 92:263504–263506CrossRef Kumari K, Chand S, Kumar P, Sharma SN, Vankar VD, Kumar V (2008) Appl Phys Lett 92:263504–263506CrossRef
15.
16.
go back to reference Mehta A, Sharma N. Shailesh, Singh VN, Srivastva AK, Chand S (October 2012) Proc. SPIE. 8549: 16th International Workshop on Physics of Semiconductor Devices 854933–6 Mehta A, Sharma N. Shailesh, Singh VN, Srivastva AK, Chand S (October 2012) Proc. SPIE. 8549: 16th International Workshop on Physics of Semiconductor Devices 854933–6
17.
go back to reference Sharma H, Sharma SN, Singh S, Kishore R, Singh G, Shivaprasad SM (2007) Appl Surf Sci 253:5325–5333CrossRef Sharma H, Sharma SN, Singh S, Kishore R, Singh G, Shivaprasad SM (2007) Appl Surf Sci 253:5325–5333CrossRef
18.
go back to reference Mattaoussi H, Cumming AW, Murray CB, Bawendi MG, Ober R (1998) Phys Rev B 58:7850–7863CrossRef Mattaoussi H, Cumming AW, Murray CB, Bawendi MG, Ober R (1998) Phys Rev B 58:7850–7863CrossRef
19.
go back to reference Lee CW, Chou CH, Huang JH, Hsu CS, Nguyen TP (2008) Mater Sci Eng B 147:307–311CrossRef Lee CW, Chou CH, Huang JH, Hsu CS, Nguyen TP (2008) Mater Sci Eng B 147:307–311CrossRef
20.
go back to reference Pankove JI (1975) Optical processes in semiconductors, 1st edn. Dover, New York, Appendix Pankove JI (1975) Optical processes in semiconductors, 1st edn. Dover, New York, Appendix
21.
22.
go back to reference Efros AL, Efros AL (1982) Sov Phys Semicond 16:772–775 Efros AL, Efros AL (1982) Sov Phys Semicond 16:772–775
23.
24.
25.
go back to reference Adair JH, Li T, Kido T, Havey K, Moon J, Mecholsky J, Morrone A, Talham DR, Ludwig MH, Wang L (1998) Mat Sci Eng R 23:139–242CrossRef Adair JH, Li T, Kido T, Havey K, Moon J, Mecholsky J, Morrone A, Talham DR, Ludwig MH, Wang L (1998) Mat Sci Eng R 23:139–242CrossRef
27.
go back to reference Becerra LR, Murray CB, Griffin RG, Bawendi MG (1994) J Chem Phys 100:3297–3300CrossRef Becerra LR, Murray CB, Griffin RG, Bawendi MG (1994) J Chem Phys 100:3297–3300CrossRef
28.
go back to reference Kalsi PS (2002) Spectroscopy of organic compounds. New Age, New Delhi, p 60 Kalsi PS (2002) Spectroscopy of organic compounds. New Age, New Delhi, p 60
29.
30.
31.
go back to reference Sharma SN, Vats T, Dhenadhayalan N, Ramamurthy P, Narula AK (2012) Sol Energy Mater Sol Cells 100:6–15CrossRef Sharma SN, Vats T, Dhenadhayalan N, Ramamurthy P, Narula AK (2012) Sol Energy Mater Sol Cells 100:6–15CrossRef
32.
go back to reference Sharma H, Sharma SN, Singh G, Shivaprasad SM (2007) Colloid Polym Sci 285:1213–1227CrossRef Sharma H, Sharma SN, Singh G, Shivaprasad SM (2007) Colloid Polym Sci 285:1213–1227CrossRef
33.
34.
go back to reference Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer-Plenum, New YorkCrossRef Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer-Plenum, New YorkCrossRef
36.
go back to reference Sharma SN, Sharma H, Singh G, Shivaprasad SM (2008) Mater Chem Phys 110:471–480CrossRef Sharma SN, Sharma H, Singh G, Shivaprasad SM (2008) Mater Chem Phys 110:471–480CrossRef
37.
go back to reference Kharkwal A, Sharma SN, Chand S, Singh AK (2012) Colloid Polym Sci 290:49–61CrossRef Kharkwal A, Sharma SN, Chand S, Singh AK (2012) Colloid Polym Sci 290:49–61CrossRef
38.
go back to reference Mulazzi E, Ripamonti A, Wery J, Dulieu B, Lefrant S (1999) Phys Rev B 60:16519–16525CrossRef Mulazzi E, Ripamonti A, Wery J, Dulieu B, Lefrant S (1999) Phys Rev B 60:16519–16525CrossRef
39.
go back to reference Yang SH, Nguyen TP, Le Rendu P, Hsu CS (2005) Thin Solid Films 471:230–235CrossRef Yang SH, Nguyen TP, Le Rendu P, Hsu CS (2005) Thin Solid Films 471:230–235CrossRef
40.
42.
go back to reference Bruevich VV, Makhmutov TSH, Elizarov SG, Nechvolodova EM, Paraschuk DY (2007) J Chem Phys 127:104905–104913CrossRef Bruevich VV, Makhmutov TSH, Elizarov SG, Nechvolodova EM, Paraschuk DY (2007) J Chem Phys 127:104905–104913CrossRef
43.
go back to reference Osotov MO, Bruevich VV, Paraschuk DY (2009) J Chem Phys 131:094906–094910CrossRef Osotov MO, Bruevich VV, Paraschuk DY (2009) J Chem Phys 131:094906–094910CrossRef
45.
46.
go back to reference Shoustikov AA, You Y, Thomson ME (1998) IEEE J Sel Top Quantum Electron 4:3–13CrossRef Shoustikov AA, You Y, Thomson ME (1998) IEEE J Sel Top Quantum Electron 4:3–13CrossRef
47.
go back to reference Anni M, Manna L, Cingolani R, Valerini D, Creti A, Lomascolo M (2004) Appl Phys Lett 85:4169–4171CrossRef Anni M, Manna L, Cingolani R, Valerini D, Creti A, Lomascolo M (2004) Appl Phys Lett 85:4169–4171CrossRef
52.
53.
54.
go back to reference Liu Z, Reed D, Kwon G, Shamsuzzoha M, Nikles DE (2007) J Phys Chem C 111:14223–14229CrossRef Liu Z, Reed D, Kwon G, Shamsuzzoha M, Nikles DE (2007) J Phys Chem C 111:14223–14229CrossRef
55.
go back to reference Salgueirino-Maceira V, Liz-Marzn LM, Farle M (2004) Langmuir 20:6946–6950CrossRef Salgueirino-Maceira V, Liz-Marzn LM, Farle M (2004) Langmuir 20:6946–6950CrossRef
Metadata
Title
Constraints in post-synthesis ligand exchange for hybrid organic (MEH-PPV)–inorganic (CdSe) nanocomposites
Authors
Aarti Mehta
Shailesh N. Sharma
Parul Chawla
Suresh Chand
Publication date
01-02-2014
Publisher
Springer Berlin Heidelberg
Published in
Colloid and Polymer Science / Issue 2/2014
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-013-3073-z

Other articles of this Issue 2/2014

Colloid and Polymer Science 2/2014 Go to the issue

Premium Partners