Skip to main content
Top
Published in: Fibers and Polymers 4/2023

07-03-2023 | Regular Article

Constructing Flexible Proton Exchange Membranes Through Alternate Deposition of Kevlar Nanofibers and Polydopamine Coating Polystyrene-Block-Poly(ethylene-ran-butylene)-Block-Polystyrene

Authors: Di Song, Ke Liu, Tingting Zuo, Xiaoqing Wei, Shu Hu, Quantong Che

Published in: Fibers and Polymers | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The flexible proton exchange membrane (PEM) was constructed through alternate deposition of Kevlar nanofibers and polydopamine (PDA)-coating polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) with spin coating technology. In the prepared (Kevlar/PDA@SEBS)5 membrane, the Kevlar nanofibers could withstand the external mechanical force owing to the fiber structure, while the flexible PEM was folded or stretched. The adhesive PDA coating was formed with the self-polymerization of dopamine protected the molecular chains of SEBS and further supported the flexible PEM. The structure of PDA coating SEBS could avoid the microstructure fracture of the flexible PEM during the folding and stretching operations. Notably, the multilayered structure promoted the phosphoric acid (PA) molecules motion through reducing the ion conduction resistance. For instance, the pristine (Kevlar/PDA@SEBS)5/PA membrane exhibited the proton conductivity of 4.11 × 10–2 S/cm at 160 °C, which was comparable to 4.13 × 10–2 S/cm of the folded membrane and (4.07–4.78) × 10–2 S/cm of the stretched membranes. The stable microstructure guaranteed the stiffness, such as 4.15 MPa of the (Kevlar/PDA@SEBS)5-fold/PA membrane and (3.50–6.34) MPa of (Kevlar/PDA@SEBS)5-stretched/PA membranes. Furthermore, the stretched membrane possessed the long-term proton conductivity stability, which was indicative of the microstructure and component stabilities.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X.B. Li, H.W. Ma, P. Wang, Z.C. Liu, J.W. Peng, W. Hu, Z.H. Jiang, B.J. Liu, M.D. Guiver, Highly conductive and mechanically stable imidazole-rich cross-linked networks for high-temperature proton exchange membrane fuel cells. Chem. Mater. 32, 1182–1191 (2020)CrossRef X.B. Li, H.W. Ma, P. Wang, Z.C. Liu, J.W. Peng, W. Hu, Z.H. Jiang, B.J. Liu, M.D. Guiver, Highly conductive and mechanically stable imidazole-rich cross-linked networks for high-temperature proton exchange membrane fuel cells. Chem. Mater. 32, 1182–1191 (2020)CrossRef
2.
go back to reference J.L. Li, X.Z. Tian, C.L. Xia, Y.T. Duan, Y.N. Sun, B.H. Liu, L.M. Wu, C.Y. Ru, S.T. Zhang, C.J. Zhao, Construction of proton transport highways induced by polarity-driving in proton exchange membranes to enhance the performance of fuel cells. ACS Appl. Mater. Interfaces 13(14), 40673–40684 (2021)PubMedCrossRef J.L. Li, X.Z. Tian, C.L. Xia, Y.T. Duan, Y.N. Sun, B.H. Liu, L.M. Wu, C.Y. Ru, S.T. Zhang, C.J. Zhao, Construction of proton transport highways induced by polarity-driving in proton exchange membranes to enhance the performance of fuel cells. ACS Appl. Mater. Interfaces 13(14), 40673–40684 (2021)PubMedCrossRef
3.
go back to reference Q.T. Che, F.Z. Feng, L. Liu, H.Q. Fan, Z.Y. Li, Preparation of the multicomponent high temperature proton exchange membranes with layer by layer self-assembly technique. Fiber. Polym. 19(8), 1585–1595 (2018)CrossRef Q.T. Che, F.Z. Feng, L. Liu, H.Q. Fan, Z.Y. Li, Preparation of the multicomponent high temperature proton exchange membranes with layer by layer self-assembly technique. Fiber. Polym. 19(8), 1585–1595 (2018)CrossRef
4.
go back to reference H.K. Lee, J.Y. Chu, V. Mohanraj, A.R. Kim, M.H. Song, D.J. Yoo, Enhanced ion conductivity of sulfonated poly(arylene ether sulfone) block copolymers linked by aliphatic chains constructing wide-range ion cluster for proton conducting electrolytes. Int. J. Hydrogen Energy 45, 29297–29307 (2020)CrossRef H.K. Lee, J.Y. Chu, V. Mohanraj, A.R. Kim, M.H. Song, D.J. Yoo, Enhanced ion conductivity of sulfonated poly(arylene ether sulfone) block copolymers linked by aliphatic chains constructing wide-range ion cluster for proton conducting electrolytes. Int. J. Hydrogen Energy 45, 29297–29307 (2020)CrossRef
5.
go back to reference Y.H. Cui, S. Wang, D. Wang, G. Liu, F.X. Liu, D. Liang, X.D. Wang, Z.P. Yong, Z. Wang, HT-PEMs based on carbazole grafted polybenzimidazole with high proton conductivity and excellent tolerance of phosphoric acid. J. Membr. Sci. 637, 119610 (2021)CrossRef Y.H. Cui, S. Wang, D. Wang, G. Liu, F.X. Liu, D. Liang, X.D. Wang, Z.P. Yong, Z. Wang, HT-PEMs based on carbazole grafted polybenzimidazole with high proton conductivity and excellent tolerance of phosphoric acid. J. Membr. Sci. 637, 119610 (2021)CrossRef
6.
go back to reference B. Lv, H. Yin, Z.Y. Huang, K. Geng, X.P. Qin, W. Song, Z.G. Shao, Polyethersulfone/polyvinylpyrrolidone/boron nitride composite membranes for high proton conductivity and long-term stability high-temperature proton exchange membrane fuel cells. J. Membr. Sci. 653, 120512 (2022)CrossRef B. Lv, H. Yin, Z.Y. Huang, K. Geng, X.P. Qin, W. Song, Z.G. Shao, Polyethersulfone/polyvinylpyrrolidone/boron nitride composite membranes for high proton conductivity and long-term stability high-temperature proton exchange membrane fuel cells. J. Membr. Sci. 653, 120512 (2022)CrossRef
7.
go back to reference Y. Wang, C.X. Zhu, R. Pfattner, H.P. Yan, L.H. Jin, S.C. Chen, F. Molina-Lopez, F. Lissel, J. Liu, N.I. Rabiah, Z. Chen, J.W. Chung, C. Linder, M.F. Toney, B. Murmann, Z.N. Bao, A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017)PubMedPubMedCentralCrossRef Y. Wang, C.X. Zhu, R. Pfattner, H.P. Yan, L.H. Jin, S.C. Chen, F. Molina-Lopez, F. Lissel, J. Liu, N.I. Rabiah, Z. Chen, J.W. Chung, C. Linder, M.F. Toney, B. Murmann, Z.N. Bao, A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017)PubMedPubMedCentralCrossRef
8.
go back to reference L.V. Kayser, D.J. Lipomi, Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Adv. Mater. 31, 1806133 (2019)CrossRef L.V. Kayser, D.J. Lipomi, Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Adv. Mater. 31, 1806133 (2019)CrossRef
9.
go back to reference B. Zhang, Y.J. Jiang, J. Han, A flexible nanocomposite membrane based on traditional cotton fabric to enhance performance of microbial fuel cell. Fiber. Polym. 17, 1296–1303 (2018) B. Zhang, Y.J. Jiang, J. Han, A flexible nanocomposite membrane based on traditional cotton fabric to enhance performance of microbial fuel cell. Fiber. Polym. 17, 1296–1303 (2018)
10.
go back to reference H.S. Sasmal, H.B. Aiyappa, S.N. Bhange, S. Karak, A. Halder, S. Kurungot, R. Banerjee, Superprotonic conductivity in flexible porous covalent organic framework membranes. Angew. Chem. Int. Edit. 57, 10894–10898 (2018)CrossRef H.S. Sasmal, H.B. Aiyappa, S.N. Bhange, S. Karak, A. Halder, S. Kurungot, R. Banerjee, Superprotonic conductivity in flexible porous covalent organic framework membranes. Angew. Chem. Int. Edit. 57, 10894–10898 (2018)CrossRef
11.
go back to reference Y. Zheng, M. Ashizawa, S. Zhang, J. Kang, S. Nikzad, Z.A. Yu, Y. Ochiai, H.C. Wu, H. Tran, J.W. Mun, Y.Q. Zheng, J.B.H. Tok, X.D. Gu, Z.N. Bao, Tuning the mechanical properties of a polymer semiconductor by modulating hydrogen bonding interactions. Chem. Mater. 32, 5700–5714 (2020)CrossRef Y. Zheng, M. Ashizawa, S. Zhang, J. Kang, S. Nikzad, Z.A. Yu, Y. Ochiai, H.C. Wu, H. Tran, J.W. Mun, Y.Q. Zheng, J.B.H. Tok, X.D. Gu, Z.N. Bao, Tuning the mechanical properties of a polymer semiconductor by modulating hydrogen bonding interactions. Chem. Mater. 32, 5700–5714 (2020)CrossRef
12.
go back to reference J. Xu, S.H. Wang, G.N. Wang, C.X. Zhu, S.C. Luo, L.H. Jin, X.D. Gu, S.C. Chen, V.R. Feig, J.W.F. To, S. Rondeau-Gagné, J. Park, B.C. Schroeder, C. Lu, J.Y. Oh, Y.M. Wang, Y. Kim, H. Yan, R. Sinclair, D.S. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J.B.H. Tok, J.W. Chung, Z.N. Bao, Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355(6320), 59–64 (2017)PubMedCrossRef J. Xu, S.H. Wang, G.N. Wang, C.X. Zhu, S.C. Luo, L.H. Jin, X.D. Gu, S.C. Chen, V.R. Feig, J.W.F. To, S. Rondeau-Gagné, J. Park, B.C. Schroeder, C. Lu, J.Y. Oh, Y.M. Wang, Y. Kim, H. Yan, R. Sinclair, D.S. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J.B.H. Tok, J.W. Chung, Z.N. Bao, Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355(6320), 59–64 (2017)PubMedCrossRef
13.
go back to reference Y. Zheng, S. Zhang, J.B.H. Tok, Z.N. Bao, Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc. 144, 4699–4715 (2022)PubMedCrossRef Y. Zheng, S. Zhang, J.B.H. Tok, Z.N. Bao, Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc. 144, 4699–4715 (2022)PubMedCrossRef
14.
go back to reference D. Song, K. Liu, T.T. Zuo, J. Jia, N. Wang, Q.T. Che, Constructing foldable and stretchable proton exchange membranes through spin coating technology. J. Mol. Liq. 360, 119421 (2022)CrossRef D. Song, K. Liu, T.T. Zuo, J. Jia, N. Wang, Q.T. Che, Constructing foldable and stretchable proton exchange membranes through spin coating technology. J. Mol. Liq. 360, 119421 (2022)CrossRef
15.
go back to reference H.T. Long, D.D. Frari, A. Martin, J. Didierjean, V. Ball, M. Michel, H.I.E. Ahrach, Polydopamine as a promising candidate for the design of high performance and corrosion-tolerant polymer electrolyte fuel cell electrodes. J. Power Sources 307, 569–577 (2016)CrossRef H.T. Long, D.D. Frari, A. Martin, J. Didierjean, V. Ball, M. Michel, H.I.E. Ahrach, Polydopamine as a promising candidate for the design of high performance and corrosion-tolerant polymer electrolyte fuel cell electrodes. J. Power Sources 307, 569–577 (2016)CrossRef
16.
go back to reference H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849), 426–430 (2007)PubMedPubMedCentralCrossRef H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849), 426–430 (2007)PubMedPubMedCentralCrossRef
17.
go back to reference F.S. Pan, H.P. Jia, S.Z. Qiao, Z.Y. Jiang, J.T. Wang, B.Y. Wang, Y.R. Zhong, Bioinspired fabrication of high performance composite membranes with ultrathin defect-free skin layer. J. Membr. Sci. 341, 279–285 (2009)CrossRef F.S. Pan, H.P. Jia, S.Z. Qiao, Z.Y. Jiang, J.T. Wang, B.Y. Wang, Y.R. Zhong, Bioinspired fabrication of high performance composite membranes with ultrathin defect-free skin layer. J. Membr. Sci. 341, 279–285 (2009)CrossRef
18.
go back to reference Y.Y. Yang, Y.T. Li, X.J. Li, L. Zhang, E.K. Fodjo, S. Han, Controllable in situ fabrication of portable AuNP/mussel-inspired polydopamine molecularly imprinted SERS substrate for selective enrichment and recognition of phthalate plasticizers. Chem. Eng. J. 402, 125179 (2020)CrossRef Y.Y. Yang, Y.T. Li, X.J. Li, L. Zhang, E.K. Fodjo, S. Han, Controllable in situ fabrication of portable AuNP/mussel-inspired polydopamine molecularly imprinted SERS substrate for selective enrichment and recognition of phthalate plasticizers. Chem. Eng. J. 402, 125179 (2020)CrossRef
19.
go back to reference X. Liu, S.X. Zhai, X.Y. Zhang, P.Z. Mao, S.J. He, W.X. Dai, J. Lin, Efficient and durable composite membranes based on polydopamine-mediated sulfonated graphene oxide for direct methanol fuel cells. J. Mater. Chem. A 9(42), 24044–24055 (2021)CrossRef X. Liu, S.X. Zhai, X.Y. Zhang, P.Z. Mao, S.J. He, W.X. Dai, J. Lin, Efficient and durable composite membranes based on polydopamine-mediated sulfonated graphene oxide for direct methanol fuel cells. J. Mater. Chem. A 9(42), 24044–24055 (2021)CrossRef
20.
go back to reference H.A. Lee, Y.F. Ma, F. Zhou, S. Hong, H. Lee, Material-independent surface chemistry beyond polydopamine coating. Acc. Chem. Res. 52(3), 704–713 (2019)PubMedCrossRef H.A. Lee, Y.F. Ma, F. Zhou, S. Hong, H. Lee, Material-independent surface chemistry beyond polydopamine coating. Acc. Chem. Res. 52(3), 704–713 (2019)PubMedCrossRef
21.
go back to reference H.X. Zhang, Q.T. Hu, X.W. Zheng, Y.H. Yin, H. Wu, Z.G. Jiang, Incorporating phosphoric acid-functionalized polydopamine into Nafion polymer by in situ sol-gel method for enhanced proton conductivity. J. Membr. Sci. 570–571, 236–244 (2019) H.X. Zhang, Q.T. Hu, X.W. Zheng, Y.H. Yin, H. Wu, Z.G. Jiang, Incorporating phosphoric acid-functionalized polydopamine into Nafion polymer by in situ sol-gel method for enhanced proton conductivity. J. Membr. Sci. 570–571, 236–244 (2019)
22.
go back to reference S.H. Roh, D.S. Shin, D.K. Kang, S.C. Kim, U.I. Kang, W.S. Park, M. Kurkuri, H.Y. Jung, Surface modification of sulfonated poly(phenylene oxide) membrane for vanadium redox flow batteries. J. Nanosci. Nanotechnol. 20(9), 5765–5770 (2020)PubMedCrossRef S.H. Roh, D.S. Shin, D.K. Kang, S.C. Kim, U.I. Kang, W.S. Park, M. Kurkuri, H.Y. Jung, Surface modification of sulfonated poly(phenylene oxide) membrane for vanadium redox flow batteries. J. Nanosci. Nanotechnol. 20(9), 5765–5770 (2020)PubMedCrossRef
23.
go back to reference T.S. Mayadevi, B.H. Goo, S.Y. Paek, O. Choi, Y. Kim, O.J. Kwon, S.Y. Lee, H.J. Kim, T.H. Kim, Nafion composite membranes impregnated with polydopamine and poly(sulfonated dopamine) for high-performance proton exchange membranes. ACS Omega 7(15), 129566–129570 (2022)CrossRef T.S. Mayadevi, B.H. Goo, S.Y. Paek, O. Choi, Y. Kim, O.J. Kwon, S.Y. Lee, H.J. Kim, T.H. Kim, Nafion composite membranes impregnated with polydopamine and poly(sulfonated dopamine) for high-performance proton exchange membranes. ACS Omega 7(15), 129566–129570 (2022)CrossRef
24.
go back to reference G.L. Liu, W.C. Tsen, S.C. Jang, F.Q. Hu, F. Zhong, H. Liu, G.J. Wang, S. Wen, G.W. Zheng, C.L. Gong, Mechanically robust and highly methanol-resistant sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) nanofiber composite membranes for direct methanol fuel cells. J. Membr. Sci. 591, 117321 (2019)CrossRef G.L. Liu, W.C. Tsen, S.C. Jang, F.Q. Hu, F. Zhong, H. Liu, G.J. Wang, S. Wen, G.W. Zheng, C.L. Gong, Mechanically robust and highly methanol-resistant sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) nanofiber composite membranes for direct methanol fuel cells. J. Membr. Sci. 591, 117321 (2019)CrossRef
25.
go back to reference H.Q. Zhang, Y.K. He, J.K. Zhang, L.S. Ma, Y.F. Li, J.T. Wang, Constructing dual-interfacial proton-conducting pathways in nanofibrous composite membrane for efficient proton transfer. J. Membr. Sci. 505, 108–118 (2016)CrossRef H.Q. Zhang, Y.K. He, J.K. Zhang, L.S. Ma, Y.F. Li, J.T. Wang, Constructing dual-interfacial proton-conducting pathways in nanofibrous composite membrane for efficient proton transfer. J. Membr. Sci. 505, 108–118 (2016)CrossRef
26.
go back to reference C.L. Gong, H. Liu, B.Q. Zhang, G.J. Wang, F. Cheng, G.W. Zheng, S. Wen, Z.G. Xue, X.L. Xie, High level of solid superacid coated poly(vinylidene fluoride) electrospun nanofiber composite polymer electrolyte membranes. J. Membr. Sci. 535, 113–121 (2017)CrossRef C.L. Gong, H. Liu, B.Q. Zhang, G.J. Wang, F. Cheng, G.W. Zheng, S. Wen, Z.G. Xue, X.L. Xie, High level of solid superacid coated poly(vinylidene fluoride) electrospun nanofiber composite polymer electrolyte membranes. J. Membr. Sci. 535, 113–121 (2017)CrossRef
27.
go back to reference M.R. Pugalenthi, R.P. Manimuthu, Synergistic effect of polydopamine-modified CaZrO3 perovskite and hydroxylated SPEEK on acid-base cation exchange membrane fuel cells. Energy Fuel 35(20), 16837–16849 (2021)CrossRef M.R. Pugalenthi, R.P. Manimuthu, Synergistic effect of polydopamine-modified CaZrO3 perovskite and hydroxylated SPEEK on acid-base cation exchange membrane fuel cells. Energy Fuel 35(20), 16837–16849 (2021)CrossRef
28.
go back to reference J.T. Wang, H.J. Bai, H.Q. Zhang, L.P. Zhao, H.L. Chen, Y.F. Li, Anhydrous proton exchange membrane of sulfonated poly(ether ether ketone) enabled by polydopamine-modified silica nanoparticles. Electrochim. Acta 152, 443–455 (2015)CrossRef J.T. Wang, H.J. Bai, H.Q. Zhang, L.P. Zhao, H.L. Chen, Y.F. Li, Anhydrous proton exchange membrane of sulfonated poly(ether ether ketone) enabled by polydopamine-modified silica nanoparticles. Electrochim. Acta 152, 443–455 (2015)CrossRef
29.
go back to reference Z. Rao, M.Q. Lan, Z.Y. Wang, H.H. Wan, G.F. Li, J.N. Zhu, B.B. Tang, H.F. Liu, Effectively facilitating the proton conduction of proton exchange membrane by polydopamine modified hollow metal-organic framework. J. Membr. Sci. 644, 120098 (2022)CrossRef Z. Rao, M.Q. Lan, Z.Y. Wang, H.H. Wan, G.F. Li, J.N. Zhu, B.B. Tang, H.F. Liu, Effectively facilitating the proton conduction of proton exchange membrane by polydopamine modified hollow metal-organic framework. J. Membr. Sci. 644, 120098 (2022)CrossRef
30.
go back to reference F. Ram, P. Velayutham, A.K. Sahu, A.K. Lele, K. Shanmuganathan, Enhancing thermomechanical and chemical stability of polymer electrolyte membranes using polydopamine coated nanocellulose. ACS Appl. Energy Mater. 3(2), 1988–1999 (2020)CrossRef F. Ram, P. Velayutham, A.K. Sahu, A.K. Lele, K. Shanmuganathan, Enhancing thermomechanical and chemical stability of polymer electrolyte membranes using polydopamine coated nanocellulose. ACS Appl. Energy Mater. 3(2), 1988–1999 (2020)CrossRef
31.
go back to reference J. Wang, C.L. Gong, S. Wen, H. Liu, C.Q. Qin, C.X. Xiong, L.J. Dong, A facile approach of fabricating proton exchange membranes by incorporating polydopamine-functionalized carbon nanotubes into chitosan. Int. J. Hydrogen Energy 44(13), 6909–6918 (2019)CrossRef J. Wang, C.L. Gong, S. Wen, H. Liu, C.Q. Qin, C.X. Xiong, L.J. Dong, A facile approach of fabricating proton exchange membranes by incorporating polydopamine-functionalized carbon nanotubes into chitosan. Int. J. Hydrogen Energy 44(13), 6909–6918 (2019)CrossRef
32.
go back to reference F. Altaf, R. Gill, R. Batool, H. Majeed, G. Abbas, K. Jacob, J. Environ. Chem. Eng. 8(5), 104118 (2020)CrossRef F. Altaf, R. Gill, R. Batool, H. Majeed, G. Abbas, K. Jacob, J. Environ. Chem. Eng. 8(5), 104118 (2020)CrossRef
33.
go back to reference Z. Esmaeilzadeh, M. Karimi, A.M. Shoushtari, M. Javanbakht, The effect of polydopamine coated multi-walled carbon nanotube on the wettability of sulfonated poly(ether ether ketone) nanocomposite as a proton exchange membrane. J. Appl. Polym. Sci. 139(20), e52142 (2022)CrossRef Z. Esmaeilzadeh, M. Karimi, A.M. Shoushtari, M. Javanbakht, The effect of polydopamine coated multi-walled carbon nanotube on the wettability of sulfonated poly(ether ether ketone) nanocomposite as a proton exchange membrane. J. Appl. Polym. Sci. 139(20), e52142 (2022)CrossRef
34.
go back to reference J.T. Wang, Y.R. Liu, J.C. Dang, G.L. Zhou, Y. Wang, Y.F. Zhang, L.B. Qu, W.J. Wu, Lamellar composite membrane with acid-base pair anchored layer-by-layer structure towards highly enhanced conductivity and stability. J. Membr. Sci. 602, 117978 (2020)CrossRef J.T. Wang, Y.R. Liu, J.C. Dang, G.L. Zhou, Y. Wang, Y.F. Zhang, L.B. Qu, W.J. Wu, Lamellar composite membrane with acid-base pair anchored layer-by-layer structure towards highly enhanced conductivity and stability. J. Membr. Sci. 602, 117978 (2020)CrossRef
35.
go back to reference Y.Y. Cai, Q. Yang, L.X. Sun, Z.Y. Zhu, Q.G. Zhang, A.M. Zhu, Q.L. Liu, Bioinspired layered proton-exchange membranes with high strength and proton conductivity. Int. J. Hydrogen Energy 46(5), 4087–4099 (2021)CrossRef Y.Y. Cai, Q. Yang, L.X. Sun, Z.Y. Zhu, Q.G. Zhang, A.M. Zhu, Q.L. Liu, Bioinspired layered proton-exchange membranes with high strength and proton conductivity. Int. J. Hydrogen Energy 46(5), 4087–4099 (2021)CrossRef
36.
go back to reference J.L. Lin, J.C. Dang, G.L. Zhou, W.J. Wu, Y.R. Liu, Y.F. Zhang, J.T. Wang, Sheet-dot-framework membrane towards efficient proton conduction and outstanding stability. J. Mater. Chem. A 8(21), 10822–10830 (2020)CrossRef J.L. Lin, J.C. Dang, G.L. Zhou, W.J. Wu, Y.R. Liu, Y.F. Zhang, J.T. Wang, Sheet-dot-framework membrane towards efficient proton conduction and outstanding stability. J. Mater. Chem. A 8(21), 10822–10830 (2020)CrossRef
37.
go back to reference Y.K. He, J.T. Wang, H.Q. Zhang, T. Zhang, B. Zhang, S.K. Cao, J.D. Liu, Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions. J. Mater. Chem. A 2, 9548–9558 (2014)CrossRef Y.K. He, J.T. Wang, H.Q. Zhang, T. Zhang, B. Zhang, S.K. Cao, J.D. Liu, Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions. J. Mater. Chem. A 2, 9548–9558 (2014)CrossRef
38.
go back to reference B. Zhang, Y. Cao, S.T. Jiang, Z. Li, G.W. He, H. Wu, Enhanced proton conductivity of Nafion nanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity. J. Membr. Sci. 518, 243–253 (2016)CrossRef B. Zhang, Y. Cao, S.T. Jiang, Z. Li, G.W. He, H. Wu, Enhanced proton conductivity of Nafion nanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity. J. Membr. Sci. 518, 243–253 (2016)CrossRef
39.
go back to reference P.P. Zhang, W. Li, L. Wang, C.L. Gong, J.H. Ding, C.S. Huang, X.D. Zhang, S.J. Zhang, L. Wang, W.F. Bu, Polydopamine-modified sulfonated polyhedral oligomeric silsesquioxane: an appealing nanofiller to address the trade-off between conductivity and stabilities for proton exchange membrane. J. Membr. Sci. 596, 117734 (2020)CrossRef P.P. Zhang, W. Li, L. Wang, C.L. Gong, J.H. Ding, C.S. Huang, X.D. Zhang, S.J. Zhang, L. Wang, W.F. Bu, Polydopamine-modified sulfonated polyhedral oligomeric silsesquioxane: an appealing nanofiller to address the trade-off between conductivity and stabilities for proton exchange membrane. J. Membr. Sci. 596, 117734 (2020)CrossRef
40.
go back to reference J. Zhao, X.Q. Duan, D. Song, J. Jia, N. Wang, Y.Y. Jing, Q.T. Che, Constructing anhydrous proton conductive aramid membranes through grafting Kevlar micro-fibrils with phosphoric acid. Fiber. Polym. 22, 1502–1510 (2021)CrossRef J. Zhao, X.Q. Duan, D. Song, J. Jia, N. Wang, Y.Y. Jing, Q.T. Che, Constructing anhydrous proton conductive aramid membranes through grafting Kevlar micro-fibrils with phosphoric acid. Fiber. Polym. 22, 1502–1510 (2021)CrossRef
41.
go back to reference L. Liu, Z.Y. Li, Q.T. Che, Multilayered membrane electrolytes based on aramid nanofibers for high-temperature proton exchange membrane fuel cells. ACS Appl. Nano Mater. 2, 2160–2168 (2019)CrossRef L. Liu, Z.Y. Li, Q.T. Che, Multilayered membrane electrolytes based on aramid nanofibers for high-temperature proton exchange membrane fuel cells. ACS Appl. Nano Mater. 2, 2160–2168 (2019)CrossRef
42.
go back to reference K.Q. Cao, C.P. Siepermann, M. Yang, A.M. Waas, N.A. Kotov, M.D. Thouless, E.M. Arruda, Reactive aramid nanostructures as high-performance polymeric building blocks for advanced composites. Adv. Funct. Mater. 23, 2072–2080 (2013)CrossRef K.Q. Cao, C.P. Siepermann, M. Yang, A.M. Waas, N.A. Kotov, M.D. Thouless, E.M. Arruda, Reactive aramid nanostructures as high-performance polymeric building blocks for advanced composites. Adv. Funct. Mater. 23, 2072–2080 (2013)CrossRef
43.
go back to reference J. Zhu, H.N. Zhang, N.A. Kotov, Thermodynamic and structural insights into nanocomposites engineering by comparing two materials assembly techniques for grapheme. ACS Nano 7, 4818–4829 (2013)PubMedCrossRef J. Zhu, H.N. Zhang, N.A. Kotov, Thermodynamic and structural insights into nanocomposites engineering by comparing two materials assembly techniques for grapheme. ACS Nano 7, 4818–4829 (2013)PubMedCrossRef
44.
go back to reference J.F. Gao, H. Wang, X.W. Huang, M.J. Hu, H.G. Xue, R.K.Y. Li, A super-hydrophobic and electrically conductive nanofibrous membrane for a chemical vapor sensor. J. Mater. Chem. A 6, 10036 (2018)CrossRef J.F. Gao, H. Wang, X.W. Huang, M.J. Hu, H.G. Xue, R.K.Y. Li, A super-hydrophobic and electrically conductive nanofibrous membrane for a chemical vapor sensor. J. Mater. Chem. A 6, 10036 (2018)CrossRef
45.
go back to reference J. Jia, K. Liu, T.T. Zuo, D. Song, N. Wang, S. Hu, X.Q. Wei, Q.T. Che, Enhancing proton conductivity at subzero temperature through constructing the well-ordered structure based on carbon dots. J. Membr. Sci. 653, 120536 (2022)CrossRef J. Jia, K. Liu, T.T. Zuo, D. Song, N. Wang, S. Hu, X.Q. Wei, Q.T. Che, Enhancing proton conductivity at subzero temperature through constructing the well-ordered structure based on carbon dots. J. Membr. Sci. 653, 120536 (2022)CrossRef
46.
go back to reference H.J. Bai, H.Q. Peng, Y. Xiang, J. Zhang, H.N. Wang, S.F. Lu, L. Zhuang, Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells. J. Power Sources 443, 227219 (2019)CrossRef H.J. Bai, H.Q. Peng, Y. Xiang, J. Zhang, H.N. Wang, S.F. Lu, L. Zhuang, Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells. J. Power Sources 443, 227219 (2019)CrossRef
47.
go back to reference Y.T. Duan, C.Y. Ru, Y. Pang, J.L. Li, B.H. Liu, C.J. Zhao, Crosslinked PAEK-based nanofiber reinforced Nafion membrane with ion-paired interfaces towards high-concentration DMF. J. Membr. Sci. 655, 120589 (2022)CrossRef Y.T. Duan, C.Y. Ru, Y. Pang, J.L. Li, B.H. Liu, C.J. Zhao, Crosslinked PAEK-based nanofiber reinforced Nafion membrane with ion-paired interfaces towards high-concentration DMF. J. Membr. Sci. 655, 120589 (2022)CrossRef
48.
go back to reference A. Paneri, Y. Heo, G. Ehlert, A. Cottrill, H. Sodano, P. Pintauro, S. Moghaddam, Proton selective ionic grapheme-based membrane for high concentration direct methanol fuel cells. J. Membr. Sci. 467, 217–225 (2014)CrossRef A. Paneri, Y. Heo, G. Ehlert, A. Cottrill, H. Sodano, P. Pintauro, S. Moghaddam, Proton selective ionic grapheme-based membrane for high concentration direct methanol fuel cells. J. Membr. Sci. 467, 217–225 (2014)CrossRef
49.
go back to reference C.W. Lin, Y.S. Lu, Highly ordered graphene oxide paper laminated with a Nafion membrane for direct methanol fuel cells. J. Power Sources 237, 187–194 (2013)CrossRef C.W. Lin, Y.S. Lu, Highly ordered graphene oxide paper laminated with a Nafion membrane for direct methanol fuel cells. J. Power Sources 237, 187–194 (2013)CrossRef
50.
go back to reference Z. Wang, H. Zheng, Q. Chen, S.M. Zhang, F. Yang, J. Kang, J.Y. Chen, Y. Cao, M. Xiang, Preparation and characterization of PVA proton exchange membranes containing phosphonic acid groups for direct methanol fuel cell applications. J. Polym. Res. 26, 200 (2019)CrossRef Z. Wang, H. Zheng, Q. Chen, S.M. Zhang, F. Yang, J. Kang, J.Y. Chen, Y. Cao, M. Xiang, Preparation and characterization of PVA proton exchange membranes containing phosphonic acid groups for direct methanol fuel cell applications. J. Polym. Res. 26, 200 (2019)CrossRef
51.
go back to reference L. Li, X.L. Liu, Y.D. Guo, Y.Y. Ma, X.P. Zhuang, W.M. Kang, Reasonable construction of proton conducting channel via biomimetic caterpillar-like alumina fiber to improve the properties of its composite proton exchange membrane. Int. J. Hydrogen Energy 69(47), 29915–29924 (2022)CrossRef L. Li, X.L. Liu, Y.D. Guo, Y.Y. Ma, X.P. Zhuang, W.M. Kang, Reasonable construction of proton conducting channel via biomimetic caterpillar-like alumina fiber to improve the properties of its composite proton exchange membrane. Int. J. Hydrogen Energy 69(47), 29915–29924 (2022)CrossRef
52.
go back to reference X.Q. Duan, J. Jia, N. Wang, D. Song, K. Liu, Y.Q. Feng, Q.T. Che, Enhancing proton conductivity of phosphoric acid-doped Kevlar nanofibers membranes by incorporating polyacrylamide and 1-butyl-3-methylimidazolium chloride. Int. J. Energy Res. 44, 11772–11782 (2020)CrossRef X.Q. Duan, J. Jia, N. Wang, D. Song, K. Liu, Y.Q. Feng, Q.T. Che, Enhancing proton conductivity of phosphoric acid-doped Kevlar nanofibers membranes by incorporating polyacrylamide and 1-butyl-3-methylimidazolium chloride. Int. J. Energy Res. 44, 11772–11782 (2020)CrossRef
53.
go back to reference Q.T. Che, N. Chen, J.M. Yu, S.C. Cheng, Sulfonated poly(ether ether) ketone/polyurethane composites doped with phosphoric acids for proton exchange membranes. Solid State Ionics 289, 199–206 (2016)CrossRef Q.T. Che, N. Chen, J.M. Yu, S.C. Cheng, Sulfonated poly(ether ether) ketone/polyurethane composites doped with phosphoric acids for proton exchange membranes. Solid State Ionics 289, 199–206 (2016)CrossRef
54.
go back to reference Y. Dai, J. Wang, P.P. Tao, R.H. He, Various hydrophilic carbon dots doped high temperature proton exchange composite membranes based on polyvinylpyrrolidone and polyethersulfone. J. Colloid Interface Sci. 553, 503–511 (2019)PubMedCrossRef Y. Dai, J. Wang, P.P. Tao, R.H. He, Various hydrophilic carbon dots doped high temperature proton exchange composite membranes based on polyvinylpyrrolidone and polyethersulfone. J. Colloid Interface Sci. 553, 503–511 (2019)PubMedCrossRef
55.
go back to reference J.F. Pan, B. Wu, L. Wu, Y.B. He, J.B. Miao, L. Ge, T.W. Xu, Proton exchange membrane from tetrazole-based poly(phthalazinone ether sulfone ketone) for high-temperature fuel cells. Int. J. Hydrogen Energy 4, 12337–12346 (2016)CrossRef J.F. Pan, B. Wu, L. Wu, Y.B. He, J.B. Miao, L. Ge, T.W. Xu, Proton exchange membrane from tetrazole-based poly(phthalazinone ether sulfone ketone) for high-temperature fuel cells. Int. J. Hydrogen Energy 4, 12337–12346 (2016)CrossRef
Metadata
Title
Constructing Flexible Proton Exchange Membranes Through Alternate Deposition of Kevlar Nanofibers and Polydopamine Coating Polystyrene-Block-Poly(ethylene-ran-butylene)-Block-Polystyrene
Authors
Di Song
Ke Liu
Tingting Zuo
Xiaoqing Wei
Shu Hu
Quantong Che
Publication date
07-03-2023
Publisher
The Korean Fiber Society
Published in
Fibers and Polymers / Issue 4/2023
Print ISSN: 1229-9197
Electronic ISSN: 1875-0052
DOI
https://doi.org/10.1007/s12221-023-00140-9

Other articles of this Issue 4/2023

Fibers and Polymers 4/2023 Go to the issue

Premium Partners