Skip to main content
Top
Published in: Quantum Information Processing 9/2020

01-08-2020

Construction of a quantum Carnot heat engine cycle

Authors: Selçuk Çakmak, Mustafa Çandır, Ferdi Altintas

Published in: Quantum Information Processing | Issue 9/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The microscopic state description of an irreversible quantum Carnot cycle for a general quantum working medium is investigated. An efficiency lag term, which quantifies the deviation of the irreversible cycle efficiency from the classical Carnot efficiency, is given in terms of the total entropy increase in the universe. The efficiency lag and the total entropy increase in the universe are directly connected to the quantum relative entropy between the density matrices obtained at the end of the quantum adiabatic and the relaxation steps of the cycle. The total entropy increase and the efficiency lag are found to be always nonnegative quantities. Our results give a direct proof that the irreversible cycle efficiency is always smaller than the classical Carnot efficiency. Two interacting spins under an external magnetic field are proposed as the working medium of the irreversible quantum Carnot cycle. The external magnetic field is considered to be quasistatically changed during the steps of the cycle. The coupling between the spins is found to break down the scale invariance and make the quantum Carnot cycle irreversible. It is shown that while the quantum coupling can lower the cycle efficiency monotonically to zero, it can make the irreversible cycle to produce more work than the one obtained from the uncoupled spins. The conditions in which one can always construct a reversible Carnot cycle for the coupled spin working medium are also given.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)ADSMathSciNet Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)ADSMathSciNet
2.
go back to reference Quan, H.T.: Quantum thermodynamic cycles and quantum heat engines II. Phys. Rev. E 79, 041129 (2009)ADSMathSciNet Quan, H.T.: Quantum thermodynamic cycles and quantum heat engines II. Phys. Rev. E 79, 041129 (2009)ADSMathSciNet
3.
go back to reference Kieu, T.D.: The second law, Maxwell’s demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93, 140403 (2004)ADSMathSciNet Kieu, T.D.: The second law, Maxwell’s demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93, 140403 (2004)ADSMathSciNet
4.
go back to reference Scovil, H.E.D., Schulz-DuBois, E.O.: Three level masers as heat engines. Phys. Rev. Lett. 2, 262–263 (1959)ADS Scovil, H.E.D., Schulz-DuBois, E.O.: Three level masers as heat engines. Phys. Rev. Lett. 2, 262–263 (1959)ADS
5.
go back to reference Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond the Carnot limit. Phys. Rev. Lett. 112, 030602 (2014)ADS Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond the Carnot limit. Phys. Rev. Lett. 112, 030602 (2014)ADS
6.
go back to reference Abah, O., Roßnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., Lutz, E.: Single-ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012)ADS Abah, O., Roßnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., Lutz, E.: Single-ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012)ADS
7.
go back to reference Fialko, O., Hallwood, D.W.: Isolated quantum heat engine. Phys. Rev. Lett. 108, 085303 (2012)ADS Fialko, O., Hallwood, D.W.: Isolated quantum heat engine. Phys. Rev. Lett. 108, 085303 (2012)ADS
8.
go back to reference Zhang, K., Bariani, F., Meystre, P.: Quantum optomechanical heat engine. Phys. Rev. Lett. 112, 150602 (2014)ADS Zhang, K., Bariani, F., Meystre, P.: Quantum optomechanical heat engine. Phys. Rev. Lett. 112, 150602 (2014)ADS
9.
go back to reference Sothmann, B., Büttiker, M.: Magnon-driven quantum-dot heat engine. EPL 99, 27001 (2012)ADS Sothmann, B., Büttiker, M.: Magnon-driven quantum-dot heat engine. EPL 99, 27001 (2012)ADS
10.
go back to reference Quan, H.T., Zhang, P., Sun, C.P.: Quantum-classical transition of photon-Carnot engine induced by quantum decoherence. Phys. Rev. E 73, 036122 (2006)ADS Quan, H.T., Zhang, P., Sun, C.P.: Quantum-classical transition of photon-Carnot engine induced by quantum decoherence. Phys. Rev. E 73, 036122 (2006)ADS
11.
go back to reference Altintas, F., Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Rabi model as a quantum coherent heat engine: from quantum biology to superconducting circuits. Phys. Rev. A 91, 023816 (2015)ADS Altintas, F., Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Rabi model as a quantum coherent heat engine: from quantum biology to superconducting circuits. Phys. Rev. A 91, 023816 (2015)ADS
12.
go back to reference Harris, S.E.: Electromagnetically induced transparency and quantum heat engines. Phys. Rev. A 94, 053859 (2016)ADS Harris, S.E.: Electromagnetically induced transparency and quantum heat engines. Phys. Rev. A 94, 053859 (2016)ADS
13.
go back to reference Rossnagel, J., Dawkins, S.T., Tolazzi, K.N., Abah, O., Lutz, E., Schmidt-Kaler, F., Singer, K.: A single-atom heat engine. Science 352, 325–329 (2016)ADSMathSciNetMATH Rossnagel, J., Dawkins, S.T., Tolazzi, K.N., Abah, O., Lutz, E., Schmidt-Kaler, F., Singer, K.: A single-atom heat engine. Science 352, 325–329 (2016)ADSMathSciNetMATH
14.
go back to reference Peterson, J.P.S., Batalhão, T.B., Herrera, M., Souza, A.M., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Experimental characterization of a spin quantum heat engine. Phys. Rev. Lett. 123, 240601 (2019)ADS Peterson, J.P.S., Batalhão, T.B., Herrera, M., Souza, A.M., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Experimental characterization of a spin quantum heat engine. Phys. Rev. Lett. 123, 240601 (2019)ADS
15.
go back to reference de Assis, R.J., de Mendonça, T.M., Villas-Boas, C.J., de Souza, A.M., Sarthour, R.S., Oliveira, I.S., de Almeida, N.G.: Efficiency of a quantum Otto heat engine operating under a reservoir at effective negative temperatures. Phys. Rev. Lett. 122, 240602 (2019) de Assis, R.J., de Mendonça, T.M., Villas-Boas, C.J., de Souza, A.M., Sarthour, R.S., Oliveira, I.S., de Almeida, N.G.: Efficiency of a quantum Otto heat engine operating under a reservoir at effective negative temperatures. Phys. Rev. Lett. 122, 240602 (2019)
16.
go back to reference Zou, Y., Jiang, Y., Mei, Y., Guo, X., Du, S.: Quantum heat engine using electromagnetically induced transparency. Phys. Rev. Lett. 119, 050602 (2017)ADS Zou, Y., Jiang, Y., Mei, Y., Guo, X., Du, S.: Quantum heat engine using electromagnetically induced transparency. Phys. Rev. Lett. 119, 050602 (2017)ADS
17.
go back to reference Klatzow, J., Becker, J.N., Ledingham, P.M., Weinzetl, C., Kaczmarek, K.T., Saunders, D.J., Nunn, J., Walmsley, I.A., Uzdin, R., Poem, E.: Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 122, 110601 (2019)ADS Klatzow, J., Becker, J.N., Ledingham, P.M., Weinzetl, C., Kaczmarek, K.T., Saunders, D.J., Nunn, J., Walmsley, I.A., Uzdin, R., Poem, E.: Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 122, 110601 (2019)ADS
18.
go back to reference von Lindenfels, D., Gräb, O., Schmiegelow, C.T., Kaushal, V., Schulz, J., Mitchison, M.T., Goold, J., Schmidt-Kaler, F., Poschinger, U.G.: Spin heat engine coupled to a harmonic-oscillator flywheel. Phys. Rev. Lett. 123, 080602 (2019) von Lindenfels, D., Gräb, O., Schmiegelow, C.T., Kaushal, V., Schulz, J., Mitchison, M.T., Goold, J., Schmidt-Kaler, F., Poschinger, U.G.: Spin heat engine coupled to a harmonic-oscillator flywheel. Phys. Rev. Lett. 123, 080602 (2019)
19.
go back to reference Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862–864 (2003)ADS Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862–864 (2003)ADS
20.
go back to reference Dillenschneider, R., Lutz, E.: Energetics of quantum correlations. Europhys. Lett. 88, 50003 (2009)ADS Dillenschneider, R., Lutz, E.: Energetics of quantum correlations. Europhys. Lett. 88, 50003 (2009)ADS
21.
go back to reference Türkpençe, D., Altintas, F., Paternostro, M., Müstecaplıoğlu, Ö.E.: A photonic Carnot engine powered by a spin-star network. EPL 117, 50002 (2017)ADS Türkpençe, D., Altintas, F., Paternostro, M., Müstecaplıoğlu, Ö.E.: A photonic Carnot engine powered by a spin-star network. EPL 117, 50002 (2017)ADS
22.
go back to reference Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Superradiant quantum heat engine. Sci. Rep. 5, 12953 (2015)ADS Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Superradiant quantum heat engine. Sci. Rep. 5, 12953 (2015)ADS
23.
go back to reference Zhang, X.Y., Huang, X.L., Yi, X.X.: Quantum Otto heat engine with a non-Markovian reservoir. J. Phys. A Math. Theor. 47, 455002 (2014)ADSMathSciNetMATH Zhang, X.Y., Huang, X.L., Yi, X.X.: Quantum Otto heat engine with a non-Markovian reservoir. J. Phys. A Math. Theor. 47, 455002 (2014)ADSMathSciNetMATH
24.
go back to reference Huang, X.L., Wang, T., Yi, X.X.: Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86, 051105 (2012)ADS Huang, X.L., Wang, T., Yi, X.X.: Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86, 051105 (2012)ADS
25.
go back to reference Uzdin, R., Levy, A., Kosloff, R.: Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5, 031044 (2015) Uzdin, R., Levy, A., Kosloff, R.: Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5, 031044 (2015)
26.
go back to reference Uzdin, R.: Coherence-induced reversibility and collective operation of quantum heat machines via coherence recycling. Phys. Rev. Appl. 6, 024004 (2016)ADS Uzdin, R.: Coherence-induced reversibility and collective operation of quantum heat machines via coherence recycling. Phys. Rev. Appl. 6, 024004 (2016)ADS
27.
go back to reference Jaramillo, J., Beau, M., del Campo, A.: Quantum supremacy of many-particle thermal machines. New J. Phys. 18, 075019 (2016)ADS Jaramillo, J., Beau, M., del Campo, A.: Quantum supremacy of many-particle thermal machines. New J. Phys. 18, 075019 (2016)ADS
28.
go back to reference Zhang, T., Liu, W.-T., Chen, P.-X., Li, C.-Z.: Four-level entangled quantum heat engines. Phys. Rev. A 75, 062102 (2007)ADS Zhang, T., Liu, W.-T., Chen, P.-X., Li, C.-Z.: Four-level entangled quantum heat engines. Phys. Rev. A 75, 062102 (2007)ADS
29.
go back to reference Thomas, G., Johal, R.S.: Coupled quantum Otto cycle. Phys. Rev. E 83, 031135 (2011)ADS Thomas, G., Johal, R.S.: Coupled quantum Otto cycle. Phys. Rev. E 83, 031135 (2011)ADS
30.
go back to reference del Campo, A., Goold, J., Paternostro, M.: More bang for your buck: super-adiabatic quantum engines. Sci. Rep. 4, 6208 (2015) del Campo, A., Goold, J., Paternostro, M.: More bang for your buck: super-adiabatic quantum engines. Sci. Rep. 4, 6208 (2015)
31.
go back to reference del Campo, A., Rams, M.M., Zurek, W.H.: Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model. Phys. Rev. Lett. 109, 115703 (2012)ADS del Campo, A., Rams, M.M., Zurek, W.H.: Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model. Phys. Rev. Lett. 109, 115703 (2012)ADS
32.
go back to reference Deng, S., Chenu, A., Diao, P., Li, F., Yu, S., Coulamy, I., del Campo, A., Wu, H.: Superadiabatic quantum friction suppression in finite-time thermodynamics. Sci. Adv. 4, eaar5909 (2018)ADS Deng, S., Chenu, A., Diao, P., Li, F., Yu, S., Coulamy, I., del Campo, A., Wu, H.: Superadiabatic quantum friction suppression in finite-time thermodynamics. Sci. Adv. 4, eaar5909 (2018)ADS
33.
go back to reference Bender, C.M., Brody, D.C., Meister, B.K.: Quantum mechanical Carnot engine. J. Phys. A Math. Gen. 33, 4427–4436 (2000)ADSMathSciNetMATH Bender, C.M., Brody, D.C., Meister, B.K.: Quantum mechanical Carnot engine. J. Phys. A Math. Gen. 33, 4427–4436 (2000)ADSMathSciNetMATH
34.
go back to reference Çakmak, S., Türkpençe, D., Altintas, F.: Special coupled quantum Otto and Carnot cycles. Eur. Phys. J. Plus 132, 554 (2017) Çakmak, S., Türkpençe, D., Altintas, F.: Special coupled quantum Otto and Carnot cycles. Eur. Phys. J. Plus 132, 554 (2017)
35.
go back to reference Thomas, G., Johal, R.S.: Friction due to inhomogeneous driving of coupled spins in a quantum heat engine. Eur. Phys. J. B 87, 166 (2014)ADS Thomas, G., Johal, R.S.: Friction due to inhomogeneous driving of coupled spins in a quantum heat engine. Eur. Phys. J. B 87, 166 (2014)ADS
36.
go back to reference Alecce, A., Galve, F., Gullo, N.L., Dell’Anna, L., Plastina, F., Zambrini, R.: Quantum Otto cycle with inner friction: finite-time and disorder effects. New J. Phys. 17, 075007 (2015)ADS Alecce, A., Galve, F., Gullo, N.L., Dell’Anna, L., Plastina, F., Zambrini, R.: Quantum Otto cycle with inner friction: finite-time and disorder effects. New J. Phys. 17, 075007 (2015)ADS
37.
go back to reference Sato, K., Sekimoto, K., Hondou, T., Takagi, F.: Irreversibility resulting from contact with a heat bath caused by the finiteness of the system. Phys. Rev. E 66, 016119 (2002)ADS Sato, K., Sekimoto, K., Hondou, T., Takagi, F.: Irreversibility resulting from contact with a heat bath caused by the finiteness of the system. Phys. Rev. E 66, 016119 (2002)ADS
38.
go back to reference Deffner, S., Jarzynski, C., del Campo, A.: Classical and quantum shortcuts to adiabaticity for scale-invariant driving. Phys. Rev. X 4, 021013 (2014) Deffner, S., Jarzynski, C., del Campo, A.: Classical and quantum shortcuts to adiabaticity for scale-invariant driving. Phys. Rev. X 4, 021013 (2014)
39.
go back to reference Feldmann, T., Kosloff, R.: Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine. Phys. Rev. E 73, 025107(R) (2006)ADS Feldmann, T., Kosloff, R.: Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine. Phys. Rev. E 73, 025107(R) (2006)ADS
40.
go back to reference Plastina, F., Alecce, A., Apollaro, T.J.G., Falcone, G., Francica, G., Galve, F., Lo Gullo, N., Zambrini, R.: Irreversible work and inner friction in quantum thermodynamic processes. Phys. Rev. Lett. 113, 260601 (2014)ADS Plastina, F., Alecce, A., Apollaro, T.J.G., Falcone, G., Francica, G., Galve, F., Lo Gullo, N., Zambrini, R.: Irreversible work and inner friction in quantum thermodynamic processes. Phys. Rev. Lett. 113, 260601 (2014)ADS
41.
go back to reference Deffner, S., Lutz, E.: Generalized Clausius inequality for nonequilibrium quantum processes. Phys. Rev. Lett. 105, 170402 (2010)ADS Deffner, S., Lutz, E.: Generalized Clausius inequality for nonequilibrium quantum processes. Phys. Rev. Lett. 105, 170402 (2010)ADS
42.
go back to reference Esposito, M., Lindenberg, K., Van den Broeck, C.: Entropy production as correlation between system and reservoir. New J. Phys. 12, 013013 (2010)ADSMathSciNetMATH Esposito, M., Lindenberg, K., Van den Broeck, C.: Entropy production as correlation between system and reservoir. New J. Phys. 12, 013013 (2010)ADSMathSciNetMATH
43.
go back to reference Francica, G., Goold, J., Plastina, F.: Role of coherence in the nonequilibrium thermodynamics of quantum systems. Phys. Rev. E 99, 042105 (2019)ADS Francica, G., Goold, J., Plastina, F.: Role of coherence in the nonequilibrium thermodynamics of quantum systems. Phys. Rev. E 99, 042105 (2019)ADS
44.
go back to reference Camati, P.A., Santos, J.F.G., Serra, R.M.: Coherence effects in the performance of the quantum Otto heat engine. Phys. Rev. A 99, 062103 (2019)ADS Camati, P.A., Santos, J.F.G., Serra, R.M.: Coherence effects in the performance of the quantum Otto heat engine. Phys. Rev. A 99, 062103 (2019)ADS
46.
go back to reference Abe, S., Okuyama, S.: Similarity between quantum mechanics and thermodynamics: entropy, temperature, and Carnot cycle. Phys. Rev. E 83, 021121 (2011)ADS Abe, S., Okuyama, S.: Similarity between quantum mechanics and thermodynamics: entropy, temperature, and Carnot cycle. Phys. Rev. E 83, 021121 (2011)ADS
47.
go back to reference Quan, H.T.: Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale. Phys. Rev. E 89, 062134 (2014)ADS Quan, H.T.: Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale. Phys. Rev. E 89, 062134 (2014)ADS
48.
go back to reference Xiao, G., Gong, J.: Construction and optimization of a quantum analog of the Carnot cycle. Phys. Rev. E 92, 012118 (2015)ADSMathSciNet Xiao, G., Gong, J.: Construction and optimization of a quantum analog of the Carnot cycle. Phys. Rev. E 92, 012118 (2015)ADSMathSciNet
49.
go back to reference Gardas, B., Deffner, S.: Thermodynamic universality of quantum Carnot engines. Phys. Rev. E 92, 042126 (2015)ADS Gardas, B., Deffner, S.: Thermodynamic universality of quantum Carnot engines. Phys. Rev. E 92, 042126 (2015)ADS
50.
go back to reference Xu, Y.Y., Chen, B., Liu, J.: Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine. Phys. Rev. E 97, 022130 (2018)ADS Xu, Y.Y., Chen, B., Liu, J.: Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine. Phys. Rev. E 97, 022130 (2018)ADS
51.
go back to reference Lekscha, J., Wilming, H., Eisert, J., Gallego, R.: Quantum thermodynamics with local control. Phys. Rev. E 97, 022142 (2018)ADS Lekscha, J., Wilming, H., Eisert, J., Gallego, R.: Quantum thermodynamics with local control. Phys. Rev. E 97, 022142 (2018)ADS
52.
go back to reference Dann, R., Kosloff, R.: Quantum signatures in the quantum Carnot cycle. New J. Phys. 22, 013055 (2020)ADS Dann, R., Kosloff, R.: Quantum signatures in the quantum Carnot cycle. New J. Phys. 22, 013055 (2020)ADS
53.
go back to reference Allahverdyan, A.E., Hovhannisyan, K.V., Melkikh, A.V., Gevorkian, S.G.: Carnot cycle at finite power: attainability of maximal efficiency. Phys. Rev. Lett. 111, 050601 (2013)ADS Allahverdyan, A.E., Hovhannisyan, K.V., Melkikh, A.V., Gevorkian, S.G.: Carnot cycle at finite power: attainability of maximal efficiency. Phys. Rev. Lett. 111, 050601 (2013)ADS
54.
go back to reference Batalhão, T.B., Souza, A.M., Sarthour, R.S., Oliveira, I.S., Paternostro, M., Lutz, E., Serra, R.M.: Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett. 115, 190601 (2015)ADS Batalhão, T.B., Souza, A.M., Sarthour, R.S., Oliveira, I.S., Paternostro, M., Lutz, E., Serra, R.M.: Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett. 115, 190601 (2015)ADS
55.
go back to reference Batalhão, T.B., Souza, A.M., Mazzola, L., Auccaise, R., Sarthour, R.S., Oliveira, I.S., Goold, J., De Chiara, G., Paternostro, M., Serra, R.M.: Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. Phys. Rev. Lett. 113, 140601 (2014)ADS Batalhão, T.B., Souza, A.M., Mazzola, L., Auccaise, R., Sarthour, R.S., Oliveira, I.S., Goold, J., De Chiara, G., Paternostro, M., Serra, R.M.: Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. Phys. Rev. Lett. 113, 140601 (2014)ADS
56.
go back to reference Allahverdyan, A.E., Nieuwenhuizen, T.M.: Minimal work principle: proof and counterexamples. Phys. Rev. E 71, 046107 (2005)ADSMathSciNet Allahverdyan, A.E., Nieuwenhuizen, T.M.: Minimal work principle: proof and counterexamples. Phys. Rev. E 71, 046107 (2005)ADSMathSciNet
57.
go back to reference Campisi, M., Fazio, R.: Dissipation, correlation and lags in heat engines. J. Phys. A Math. Theor. 49, 345002 (2016)ADSMathSciNetMATH Campisi, M., Fazio, R.: Dissipation, correlation and lags in heat engines. J. Phys. A Math. Theor. 49, 345002 (2016)ADSMathSciNetMATH
58.
go back to reference Tajima, H., Hayashi, M.: Finite-size effect on optimal efficiency of heat engines. Phys. Rev. E 96, 012128 (2017)ADS Tajima, H., Hayashi, M.: Finite-size effect on optimal efficiency of heat engines. Phys. Rev. E 96, 012128 (2017)ADS
59.
go back to reference Shiraishi, N., Tajima, H.: Efficiency versus speed in quantum heat engines: rigorous constraint from Lieb–Robinson bound. Phys. Rev. E 96, 022138 (2017)ADS Shiraishi, N., Tajima, H.: Efficiency versus speed in quantum heat engines: rigorous constraint from Lieb–Robinson bound. Phys. Rev. E 96, 022138 (2017)ADS
60.
go back to reference Köse, E., Çakmak, S., Gençten, A., Kominis, I.K., Müstecaplıoğlu, Ö.E.: Algorithmic quantum heat engines. Phys. Rev. E 100, 012109 (2019)ADS Köse, E., Çakmak, S., Gençten, A., Kominis, I.K., Müstecaplıoğlu, Ö.E.: Algorithmic quantum heat engines. Phys. Rev. E 100, 012109 (2019)ADS
61.
go back to reference Çakmak, S., Altintas, F.: Quantum Carnot cycle with inner friction. Quantum Inf. Process. 19, 248 (2020)ADS Çakmak, S., Altintas, F.: Quantum Carnot cycle with inner friction. Quantum Inf. Process. 19, 248 (2020)ADS
62.
go back to reference Altintas, F.: Comparison of the coupled quantum Carnot and Otto cycles. Phys. A Stat. Mech. Appl. 523, 40 (2019)MathSciNet Altintas, F.: Comparison of the coupled quantum Carnot and Otto cycles. Phys. A Stat. Mech. Appl. 523, 40 (2019)MathSciNet
63.
go back to reference Hardal, A.Ü.C., Aslan, N., Wilson, C.M., Müstecaplıoğlu, Ö.E.: Quantum heat engine with coupled superconducting resonators. Phys. Rev. E 96, 062120 (2017)ADS Hardal, A.Ü.C., Aslan, N., Wilson, C.M., Müstecaplıoğlu, Ö.E.: Quantum heat engine with coupled superconducting resonators. Phys. Rev. E 96, 062120 (2017)ADS
64.
go back to reference Tuncer, A., Izadyari, M., Dağ, C.B., Ozaydin, F., Müstecaplıoğlu, Ö.E.: Work and heat value of bound entanglement. Quantum Inf. Process. 18, 373 (2019)ADSMathSciNet Tuncer, A., Izadyari, M., Dağ, C.B., Ozaydin, F., Müstecaplıoğlu, Ö.E.: Work and heat value of bound entanglement. Quantum Inf. Process. 18, 373 (2019)ADSMathSciNet
65.
go back to reference Dağ, C.B., Niedenzu, W., Ozaydin, F., Müstecaplıoğlu, Ö.E., Kurizki, G.: Temperature control in dissipative cavities by entangled dimers. J. Phys. Chem. C 123, 4035–4043 (2019) Dağ, C.B., Niedenzu, W., Ozaydin, F., Müstecaplıoğlu, Ö.E., Kurizki, G.: Temperature control in dissipative cavities by entangled dimers. J. Phys. Chem. C 123, 4035–4043 (2019)
66.
go back to reference Huang, X.L., Yang, A.N., Zhang, H.W., Zhao, S.Q., Wu, S.L.: Two particles in measurement-based quantum heat engine without feedback control. Quantum Inf. Process. 19, 242 (2020)ADS Huang, X.L., Yang, A.N., Zhang, H.W., Zhao, S.Q., Wu, S.L.: Two particles in measurement-based quantum heat engine without feedback control. Quantum Inf. Process. 19, 242 (2020)ADS
67.
go back to reference Carnot, N.L.S.: Réflexions sur la puissance motrice du feu et sur les machines propres à dèvelopper cette puissance. Bachelier, Paris (1824)MATH Carnot, N.L.S.: Réflexions sur la puissance motrice du feu et sur les machines propres à dèvelopper cette puissance. Bachelier, Paris (1824)MATH
68.
go back to reference Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, New York (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, New York (2000)MATH
69.
go back to reference Štelmachovič, P., Bužek, V.: Quantum-information approach to the Ising model: entanglement in chains of qubits. Phys. Rev. A 70, 032313 (2004)ADS Štelmachovič, P., Bužek, V.: Quantum-information approach to the Ising model: entanglement in chains of qubits. Phys. Rev. A 70, 032313 (2004)ADS
Metadata
Title
Construction of a quantum Carnot heat engine cycle
Authors
Selçuk Çakmak
Mustafa Çandır
Ferdi Altintas
Publication date
01-08-2020
Publisher
Springer US
Published in
Quantum Information Processing / Issue 9/2020
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02831-1

Other articles of this Issue 9/2020

Quantum Information Processing 9/2020 Go to the issue