Skip to main content
Erschienen in: Quantum Information Processing 9/2020

01.08.2020

Construction of a quantum Carnot heat engine cycle

Erschienen in: Quantum Information Processing | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The microscopic state description of an irreversible quantum Carnot cycle for a general quantum working medium is investigated. An efficiency lag term, which quantifies the deviation of the irreversible cycle efficiency from the classical Carnot efficiency, is given in terms of the total entropy increase in the universe. The efficiency lag and the total entropy increase in the universe are directly connected to the quantum relative entropy between the density matrices obtained at the end of the quantum adiabatic and the relaxation steps of the cycle. The total entropy increase and the efficiency lag are found to be always nonnegative quantities. Our results give a direct proof that the irreversible cycle efficiency is always smaller than the classical Carnot efficiency. Two interacting spins under an external magnetic field are proposed as the working medium of the irreversible quantum Carnot cycle. The external magnetic field is considered to be quasistatically changed during the steps of the cycle. The coupling between the spins is found to break down the scale invariance and make the quantum Carnot cycle irreversible. It is shown that while the quantum coupling can lower the cycle efficiency monotonically to zero, it can make the irreversible cycle to produce more work than the one obtained from the uncoupled spins. The conditions in which one can always construct a reversible Carnot cycle for the coupled spin working medium are also given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)ADSMathSciNet Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)ADSMathSciNet
2.
Zurück zum Zitat Quan, H.T.: Quantum thermodynamic cycles and quantum heat engines II. Phys. Rev. E 79, 041129 (2009)ADSMathSciNet Quan, H.T.: Quantum thermodynamic cycles and quantum heat engines II. Phys. Rev. E 79, 041129 (2009)ADSMathSciNet
3.
Zurück zum Zitat Kieu, T.D.: The second law, Maxwell’s demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93, 140403 (2004)ADSMathSciNet Kieu, T.D.: The second law, Maxwell’s demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93, 140403 (2004)ADSMathSciNet
4.
Zurück zum Zitat Scovil, H.E.D., Schulz-DuBois, E.O.: Three level masers as heat engines. Phys. Rev. Lett. 2, 262–263 (1959)ADS Scovil, H.E.D., Schulz-DuBois, E.O.: Three level masers as heat engines. Phys. Rev. Lett. 2, 262–263 (1959)ADS
5.
Zurück zum Zitat Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond the Carnot limit. Phys. Rev. Lett. 112, 030602 (2014)ADS Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond the Carnot limit. Phys. Rev. Lett. 112, 030602 (2014)ADS
6.
Zurück zum Zitat Abah, O., Roßnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., Lutz, E.: Single-ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012)ADS Abah, O., Roßnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., Lutz, E.: Single-ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012)ADS
7.
Zurück zum Zitat Fialko, O., Hallwood, D.W.: Isolated quantum heat engine. Phys. Rev. Lett. 108, 085303 (2012)ADS Fialko, O., Hallwood, D.W.: Isolated quantum heat engine. Phys. Rev. Lett. 108, 085303 (2012)ADS
8.
Zurück zum Zitat Zhang, K., Bariani, F., Meystre, P.: Quantum optomechanical heat engine. Phys. Rev. Lett. 112, 150602 (2014)ADS Zhang, K., Bariani, F., Meystre, P.: Quantum optomechanical heat engine. Phys. Rev. Lett. 112, 150602 (2014)ADS
9.
Zurück zum Zitat Sothmann, B., Büttiker, M.: Magnon-driven quantum-dot heat engine. EPL 99, 27001 (2012)ADS Sothmann, B., Büttiker, M.: Magnon-driven quantum-dot heat engine. EPL 99, 27001 (2012)ADS
10.
Zurück zum Zitat Quan, H.T., Zhang, P., Sun, C.P.: Quantum-classical transition of photon-Carnot engine induced by quantum decoherence. Phys. Rev. E 73, 036122 (2006)ADS Quan, H.T., Zhang, P., Sun, C.P.: Quantum-classical transition of photon-Carnot engine induced by quantum decoherence. Phys. Rev. E 73, 036122 (2006)ADS
11.
Zurück zum Zitat Altintas, F., Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Rabi model as a quantum coherent heat engine: from quantum biology to superconducting circuits. Phys. Rev. A 91, 023816 (2015)ADS Altintas, F., Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Rabi model as a quantum coherent heat engine: from quantum biology to superconducting circuits. Phys. Rev. A 91, 023816 (2015)ADS
12.
Zurück zum Zitat Harris, S.E.: Electromagnetically induced transparency and quantum heat engines. Phys. Rev. A 94, 053859 (2016)ADS Harris, S.E.: Electromagnetically induced transparency and quantum heat engines. Phys. Rev. A 94, 053859 (2016)ADS
13.
Zurück zum Zitat Rossnagel, J., Dawkins, S.T., Tolazzi, K.N., Abah, O., Lutz, E., Schmidt-Kaler, F., Singer, K.: A single-atom heat engine. Science 352, 325–329 (2016)ADSMathSciNetMATH Rossnagel, J., Dawkins, S.T., Tolazzi, K.N., Abah, O., Lutz, E., Schmidt-Kaler, F., Singer, K.: A single-atom heat engine. Science 352, 325–329 (2016)ADSMathSciNetMATH
14.
Zurück zum Zitat Peterson, J.P.S., Batalhão, T.B., Herrera, M., Souza, A.M., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Experimental characterization of a spin quantum heat engine. Phys. Rev. Lett. 123, 240601 (2019)ADS Peterson, J.P.S., Batalhão, T.B., Herrera, M., Souza, A.M., Sarthour, R.S., Oliveira, I.S., Serra, R.M.: Experimental characterization of a spin quantum heat engine. Phys. Rev. Lett. 123, 240601 (2019)ADS
15.
Zurück zum Zitat de Assis, R.J., de Mendonça, T.M., Villas-Boas, C.J., de Souza, A.M., Sarthour, R.S., Oliveira, I.S., de Almeida, N.G.: Efficiency of a quantum Otto heat engine operating under a reservoir at effective negative temperatures. Phys. Rev. Lett. 122, 240602 (2019) de Assis, R.J., de Mendonça, T.M., Villas-Boas, C.J., de Souza, A.M., Sarthour, R.S., Oliveira, I.S., de Almeida, N.G.: Efficiency of a quantum Otto heat engine operating under a reservoir at effective negative temperatures. Phys. Rev. Lett. 122, 240602 (2019)
16.
Zurück zum Zitat Zou, Y., Jiang, Y., Mei, Y., Guo, X., Du, S.: Quantum heat engine using electromagnetically induced transparency. Phys. Rev. Lett. 119, 050602 (2017)ADS Zou, Y., Jiang, Y., Mei, Y., Guo, X., Du, S.: Quantum heat engine using electromagnetically induced transparency. Phys. Rev. Lett. 119, 050602 (2017)ADS
17.
Zurück zum Zitat Klatzow, J., Becker, J.N., Ledingham, P.M., Weinzetl, C., Kaczmarek, K.T., Saunders, D.J., Nunn, J., Walmsley, I.A., Uzdin, R., Poem, E.: Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 122, 110601 (2019)ADS Klatzow, J., Becker, J.N., Ledingham, P.M., Weinzetl, C., Kaczmarek, K.T., Saunders, D.J., Nunn, J., Walmsley, I.A., Uzdin, R., Poem, E.: Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 122, 110601 (2019)ADS
18.
Zurück zum Zitat von Lindenfels, D., Gräb, O., Schmiegelow, C.T., Kaushal, V., Schulz, J., Mitchison, M.T., Goold, J., Schmidt-Kaler, F., Poschinger, U.G.: Spin heat engine coupled to a harmonic-oscillator flywheel. Phys. Rev. Lett. 123, 080602 (2019) von Lindenfels, D., Gräb, O., Schmiegelow, C.T., Kaushal, V., Schulz, J., Mitchison, M.T., Goold, J., Schmidt-Kaler, F., Poschinger, U.G.: Spin heat engine coupled to a harmonic-oscillator flywheel. Phys. Rev. Lett. 123, 080602 (2019)
19.
Zurück zum Zitat Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862–864 (2003)ADS Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862–864 (2003)ADS
20.
Zurück zum Zitat Dillenschneider, R., Lutz, E.: Energetics of quantum correlations. Europhys. Lett. 88, 50003 (2009)ADS Dillenschneider, R., Lutz, E.: Energetics of quantum correlations. Europhys. Lett. 88, 50003 (2009)ADS
21.
Zurück zum Zitat Türkpençe, D., Altintas, F., Paternostro, M., Müstecaplıoğlu, Ö.E.: A photonic Carnot engine powered by a spin-star network. EPL 117, 50002 (2017)ADS Türkpençe, D., Altintas, F., Paternostro, M., Müstecaplıoğlu, Ö.E.: A photonic Carnot engine powered by a spin-star network. EPL 117, 50002 (2017)ADS
22.
Zurück zum Zitat Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Superradiant quantum heat engine. Sci. Rep. 5, 12953 (2015)ADS Hardal, A.Ü.C., Müstecaplıoğlu, Ö.E.: Superradiant quantum heat engine. Sci. Rep. 5, 12953 (2015)ADS
23.
Zurück zum Zitat Zhang, X.Y., Huang, X.L., Yi, X.X.: Quantum Otto heat engine with a non-Markovian reservoir. J. Phys. A Math. Theor. 47, 455002 (2014)ADSMathSciNetMATH Zhang, X.Y., Huang, X.L., Yi, X.X.: Quantum Otto heat engine with a non-Markovian reservoir. J. Phys. A Math. Theor. 47, 455002 (2014)ADSMathSciNetMATH
24.
Zurück zum Zitat Huang, X.L., Wang, T., Yi, X.X.: Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86, 051105 (2012)ADS Huang, X.L., Wang, T., Yi, X.X.: Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86, 051105 (2012)ADS
25.
Zurück zum Zitat Uzdin, R., Levy, A., Kosloff, R.: Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5, 031044 (2015) Uzdin, R., Levy, A., Kosloff, R.: Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5, 031044 (2015)
26.
Zurück zum Zitat Uzdin, R.: Coherence-induced reversibility and collective operation of quantum heat machines via coherence recycling. Phys. Rev. Appl. 6, 024004 (2016)ADS Uzdin, R.: Coherence-induced reversibility and collective operation of quantum heat machines via coherence recycling. Phys. Rev. Appl. 6, 024004 (2016)ADS
27.
Zurück zum Zitat Jaramillo, J., Beau, M., del Campo, A.: Quantum supremacy of many-particle thermal machines. New J. Phys. 18, 075019 (2016)ADS Jaramillo, J., Beau, M., del Campo, A.: Quantum supremacy of many-particle thermal machines. New J. Phys. 18, 075019 (2016)ADS
28.
Zurück zum Zitat Zhang, T., Liu, W.-T., Chen, P.-X., Li, C.-Z.: Four-level entangled quantum heat engines. Phys. Rev. A 75, 062102 (2007)ADS Zhang, T., Liu, W.-T., Chen, P.-X., Li, C.-Z.: Four-level entangled quantum heat engines. Phys. Rev. A 75, 062102 (2007)ADS
29.
Zurück zum Zitat Thomas, G., Johal, R.S.: Coupled quantum Otto cycle. Phys. Rev. E 83, 031135 (2011)ADS Thomas, G., Johal, R.S.: Coupled quantum Otto cycle. Phys. Rev. E 83, 031135 (2011)ADS
30.
Zurück zum Zitat del Campo, A., Goold, J., Paternostro, M.: More bang for your buck: super-adiabatic quantum engines. Sci. Rep. 4, 6208 (2015) del Campo, A., Goold, J., Paternostro, M.: More bang for your buck: super-adiabatic quantum engines. Sci. Rep. 4, 6208 (2015)
31.
Zurück zum Zitat del Campo, A., Rams, M.M., Zurek, W.H.: Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model. Phys. Rev. Lett. 109, 115703 (2012)ADS del Campo, A., Rams, M.M., Zurek, W.H.: Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model. Phys. Rev. Lett. 109, 115703 (2012)ADS
32.
Zurück zum Zitat Deng, S., Chenu, A., Diao, P., Li, F., Yu, S., Coulamy, I., del Campo, A., Wu, H.: Superadiabatic quantum friction suppression in finite-time thermodynamics. Sci. Adv. 4, eaar5909 (2018)ADS Deng, S., Chenu, A., Diao, P., Li, F., Yu, S., Coulamy, I., del Campo, A., Wu, H.: Superadiabatic quantum friction suppression in finite-time thermodynamics. Sci. Adv. 4, eaar5909 (2018)ADS
33.
Zurück zum Zitat Bender, C.M., Brody, D.C., Meister, B.K.: Quantum mechanical Carnot engine. J. Phys. A Math. Gen. 33, 4427–4436 (2000)ADSMathSciNetMATH Bender, C.M., Brody, D.C., Meister, B.K.: Quantum mechanical Carnot engine. J. Phys. A Math. Gen. 33, 4427–4436 (2000)ADSMathSciNetMATH
34.
Zurück zum Zitat Çakmak, S., Türkpençe, D., Altintas, F.: Special coupled quantum Otto and Carnot cycles. Eur. Phys. J. Plus 132, 554 (2017) Çakmak, S., Türkpençe, D., Altintas, F.: Special coupled quantum Otto and Carnot cycles. Eur. Phys. J. Plus 132, 554 (2017)
35.
Zurück zum Zitat Thomas, G., Johal, R.S.: Friction due to inhomogeneous driving of coupled spins in a quantum heat engine. Eur. Phys. J. B 87, 166 (2014)ADS Thomas, G., Johal, R.S.: Friction due to inhomogeneous driving of coupled spins in a quantum heat engine. Eur. Phys. J. B 87, 166 (2014)ADS
36.
Zurück zum Zitat Alecce, A., Galve, F., Gullo, N.L., Dell’Anna, L., Plastina, F., Zambrini, R.: Quantum Otto cycle with inner friction: finite-time and disorder effects. New J. Phys. 17, 075007 (2015)ADS Alecce, A., Galve, F., Gullo, N.L., Dell’Anna, L., Plastina, F., Zambrini, R.: Quantum Otto cycle with inner friction: finite-time and disorder effects. New J. Phys. 17, 075007 (2015)ADS
37.
Zurück zum Zitat Sato, K., Sekimoto, K., Hondou, T., Takagi, F.: Irreversibility resulting from contact with a heat bath caused by the finiteness of the system. Phys. Rev. E 66, 016119 (2002)ADS Sato, K., Sekimoto, K., Hondou, T., Takagi, F.: Irreversibility resulting from contact with a heat bath caused by the finiteness of the system. Phys. Rev. E 66, 016119 (2002)ADS
38.
Zurück zum Zitat Deffner, S., Jarzynski, C., del Campo, A.: Classical and quantum shortcuts to adiabaticity for scale-invariant driving. Phys. Rev. X 4, 021013 (2014) Deffner, S., Jarzynski, C., del Campo, A.: Classical and quantum shortcuts to adiabaticity for scale-invariant driving. Phys. Rev. X 4, 021013 (2014)
39.
Zurück zum Zitat Feldmann, T., Kosloff, R.: Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine. Phys. Rev. E 73, 025107(R) (2006)ADS Feldmann, T., Kosloff, R.: Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine. Phys. Rev. E 73, 025107(R) (2006)ADS
40.
Zurück zum Zitat Plastina, F., Alecce, A., Apollaro, T.J.G., Falcone, G., Francica, G., Galve, F., Lo Gullo, N., Zambrini, R.: Irreversible work and inner friction in quantum thermodynamic processes. Phys. Rev. Lett. 113, 260601 (2014)ADS Plastina, F., Alecce, A., Apollaro, T.J.G., Falcone, G., Francica, G., Galve, F., Lo Gullo, N., Zambrini, R.: Irreversible work and inner friction in quantum thermodynamic processes. Phys. Rev. Lett. 113, 260601 (2014)ADS
41.
Zurück zum Zitat Deffner, S., Lutz, E.: Generalized Clausius inequality for nonequilibrium quantum processes. Phys. Rev. Lett. 105, 170402 (2010)ADS Deffner, S., Lutz, E.: Generalized Clausius inequality for nonequilibrium quantum processes. Phys. Rev. Lett. 105, 170402 (2010)ADS
42.
Zurück zum Zitat Esposito, M., Lindenberg, K., Van den Broeck, C.: Entropy production as correlation between system and reservoir. New J. Phys. 12, 013013 (2010)ADSMathSciNetMATH Esposito, M., Lindenberg, K., Van den Broeck, C.: Entropy production as correlation between system and reservoir. New J. Phys. 12, 013013 (2010)ADSMathSciNetMATH
43.
Zurück zum Zitat Francica, G., Goold, J., Plastina, F.: Role of coherence in the nonequilibrium thermodynamics of quantum systems. Phys. Rev. E 99, 042105 (2019)ADS Francica, G., Goold, J., Plastina, F.: Role of coherence in the nonequilibrium thermodynamics of quantum systems. Phys. Rev. E 99, 042105 (2019)ADS
44.
Zurück zum Zitat Camati, P.A., Santos, J.F.G., Serra, R.M.: Coherence effects in the performance of the quantum Otto heat engine. Phys. Rev. A 99, 062103 (2019)ADS Camati, P.A., Santos, J.F.G., Serra, R.M.: Coherence effects in the performance of the quantum Otto heat engine. Phys. Rev. A 99, 062103 (2019)ADS
46.
Zurück zum Zitat Abe, S., Okuyama, S.: Similarity between quantum mechanics and thermodynamics: entropy, temperature, and Carnot cycle. Phys. Rev. E 83, 021121 (2011)ADS Abe, S., Okuyama, S.: Similarity between quantum mechanics and thermodynamics: entropy, temperature, and Carnot cycle. Phys. Rev. E 83, 021121 (2011)ADS
47.
Zurück zum Zitat Quan, H.T.: Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale. Phys. Rev. E 89, 062134 (2014)ADS Quan, H.T.: Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale. Phys. Rev. E 89, 062134 (2014)ADS
48.
Zurück zum Zitat Xiao, G., Gong, J.: Construction and optimization of a quantum analog of the Carnot cycle. Phys. Rev. E 92, 012118 (2015)ADSMathSciNet Xiao, G., Gong, J.: Construction and optimization of a quantum analog of the Carnot cycle. Phys. Rev. E 92, 012118 (2015)ADSMathSciNet
49.
Zurück zum Zitat Gardas, B., Deffner, S.: Thermodynamic universality of quantum Carnot engines. Phys. Rev. E 92, 042126 (2015)ADS Gardas, B., Deffner, S.: Thermodynamic universality of quantum Carnot engines. Phys. Rev. E 92, 042126 (2015)ADS
50.
Zurück zum Zitat Xu, Y.Y., Chen, B., Liu, J.: Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine. Phys. Rev. E 97, 022130 (2018)ADS Xu, Y.Y., Chen, B., Liu, J.: Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine. Phys. Rev. E 97, 022130 (2018)ADS
51.
Zurück zum Zitat Lekscha, J., Wilming, H., Eisert, J., Gallego, R.: Quantum thermodynamics with local control. Phys. Rev. E 97, 022142 (2018)ADS Lekscha, J., Wilming, H., Eisert, J., Gallego, R.: Quantum thermodynamics with local control. Phys. Rev. E 97, 022142 (2018)ADS
52.
Zurück zum Zitat Dann, R., Kosloff, R.: Quantum signatures in the quantum Carnot cycle. New J. Phys. 22, 013055 (2020)ADS Dann, R., Kosloff, R.: Quantum signatures in the quantum Carnot cycle. New J. Phys. 22, 013055 (2020)ADS
53.
Zurück zum Zitat Allahverdyan, A.E., Hovhannisyan, K.V., Melkikh, A.V., Gevorkian, S.G.: Carnot cycle at finite power: attainability of maximal efficiency. Phys. Rev. Lett. 111, 050601 (2013)ADS Allahverdyan, A.E., Hovhannisyan, K.V., Melkikh, A.V., Gevorkian, S.G.: Carnot cycle at finite power: attainability of maximal efficiency. Phys. Rev. Lett. 111, 050601 (2013)ADS
54.
Zurück zum Zitat Batalhão, T.B., Souza, A.M., Sarthour, R.S., Oliveira, I.S., Paternostro, M., Lutz, E., Serra, R.M.: Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett. 115, 190601 (2015)ADS Batalhão, T.B., Souza, A.M., Sarthour, R.S., Oliveira, I.S., Paternostro, M., Lutz, E., Serra, R.M.: Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett. 115, 190601 (2015)ADS
55.
Zurück zum Zitat Batalhão, T.B., Souza, A.M., Mazzola, L., Auccaise, R., Sarthour, R.S., Oliveira, I.S., Goold, J., De Chiara, G., Paternostro, M., Serra, R.M.: Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. Phys. Rev. Lett. 113, 140601 (2014)ADS Batalhão, T.B., Souza, A.M., Mazzola, L., Auccaise, R., Sarthour, R.S., Oliveira, I.S., Goold, J., De Chiara, G., Paternostro, M., Serra, R.M.: Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. Phys. Rev. Lett. 113, 140601 (2014)ADS
56.
Zurück zum Zitat Allahverdyan, A.E., Nieuwenhuizen, T.M.: Minimal work principle: proof and counterexamples. Phys. Rev. E 71, 046107 (2005)ADSMathSciNet Allahverdyan, A.E., Nieuwenhuizen, T.M.: Minimal work principle: proof and counterexamples. Phys. Rev. E 71, 046107 (2005)ADSMathSciNet
57.
Zurück zum Zitat Campisi, M., Fazio, R.: Dissipation, correlation and lags in heat engines. J. Phys. A Math. Theor. 49, 345002 (2016)ADSMathSciNetMATH Campisi, M., Fazio, R.: Dissipation, correlation and lags in heat engines. J. Phys. A Math. Theor. 49, 345002 (2016)ADSMathSciNetMATH
58.
Zurück zum Zitat Tajima, H., Hayashi, M.: Finite-size effect on optimal efficiency of heat engines. Phys. Rev. E 96, 012128 (2017)ADS Tajima, H., Hayashi, M.: Finite-size effect on optimal efficiency of heat engines. Phys. Rev. E 96, 012128 (2017)ADS
59.
Zurück zum Zitat Shiraishi, N., Tajima, H.: Efficiency versus speed in quantum heat engines: rigorous constraint from Lieb–Robinson bound. Phys. Rev. E 96, 022138 (2017)ADS Shiraishi, N., Tajima, H.: Efficiency versus speed in quantum heat engines: rigorous constraint from Lieb–Robinson bound. Phys. Rev. E 96, 022138 (2017)ADS
60.
Zurück zum Zitat Köse, E., Çakmak, S., Gençten, A., Kominis, I.K., Müstecaplıoğlu, Ö.E.: Algorithmic quantum heat engines. Phys. Rev. E 100, 012109 (2019)ADS Köse, E., Çakmak, S., Gençten, A., Kominis, I.K., Müstecaplıoğlu, Ö.E.: Algorithmic quantum heat engines. Phys. Rev. E 100, 012109 (2019)ADS
61.
Zurück zum Zitat Çakmak, S., Altintas, F.: Quantum Carnot cycle with inner friction. Quantum Inf. Process. 19, 248 (2020)ADS Çakmak, S., Altintas, F.: Quantum Carnot cycle with inner friction. Quantum Inf. Process. 19, 248 (2020)ADS
62.
Zurück zum Zitat Altintas, F.: Comparison of the coupled quantum Carnot and Otto cycles. Phys. A Stat. Mech. Appl. 523, 40 (2019)MathSciNet Altintas, F.: Comparison of the coupled quantum Carnot and Otto cycles. Phys. A Stat. Mech. Appl. 523, 40 (2019)MathSciNet
63.
Zurück zum Zitat Hardal, A.Ü.C., Aslan, N., Wilson, C.M., Müstecaplıoğlu, Ö.E.: Quantum heat engine with coupled superconducting resonators. Phys. Rev. E 96, 062120 (2017)ADS Hardal, A.Ü.C., Aslan, N., Wilson, C.M., Müstecaplıoğlu, Ö.E.: Quantum heat engine with coupled superconducting resonators. Phys. Rev. E 96, 062120 (2017)ADS
64.
Zurück zum Zitat Tuncer, A., Izadyari, M., Dağ, C.B., Ozaydin, F., Müstecaplıoğlu, Ö.E.: Work and heat value of bound entanglement. Quantum Inf. Process. 18, 373 (2019)ADSMathSciNet Tuncer, A., Izadyari, M., Dağ, C.B., Ozaydin, F., Müstecaplıoğlu, Ö.E.: Work and heat value of bound entanglement. Quantum Inf. Process. 18, 373 (2019)ADSMathSciNet
65.
Zurück zum Zitat Dağ, C.B., Niedenzu, W., Ozaydin, F., Müstecaplıoğlu, Ö.E., Kurizki, G.: Temperature control in dissipative cavities by entangled dimers. J. Phys. Chem. C 123, 4035–4043 (2019) Dağ, C.B., Niedenzu, W., Ozaydin, F., Müstecaplıoğlu, Ö.E., Kurizki, G.: Temperature control in dissipative cavities by entangled dimers. J. Phys. Chem. C 123, 4035–4043 (2019)
66.
Zurück zum Zitat Huang, X.L., Yang, A.N., Zhang, H.W., Zhao, S.Q., Wu, S.L.: Two particles in measurement-based quantum heat engine without feedback control. Quantum Inf. Process. 19, 242 (2020)ADS Huang, X.L., Yang, A.N., Zhang, H.W., Zhao, S.Q., Wu, S.L.: Two particles in measurement-based quantum heat engine without feedback control. Quantum Inf. Process. 19, 242 (2020)ADS
67.
Zurück zum Zitat Carnot, N.L.S.: Réflexions sur la puissance motrice du feu et sur les machines propres à dèvelopper cette puissance. Bachelier, Paris (1824)MATH Carnot, N.L.S.: Réflexions sur la puissance motrice du feu et sur les machines propres à dèvelopper cette puissance. Bachelier, Paris (1824)MATH
68.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, New York (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, New York (2000)MATH
69.
Zurück zum Zitat Štelmachovič, P., Bužek, V.: Quantum-information approach to the Ising model: entanglement in chains of qubits. Phys. Rev. A 70, 032313 (2004)ADS Štelmachovič, P., Bužek, V.: Quantum-information approach to the Ising model: entanglement in chains of qubits. Phys. Rev. A 70, 032313 (2004)ADS
Metadaten
Titel
Construction of a quantum Carnot heat engine cycle
Publikationsdatum
01.08.2020
Erschienen in
Quantum Information Processing / Ausgabe 9/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02831-1

Weitere Artikel der Ausgabe 9/2020

Quantum Information Processing 9/2020 Zur Ausgabe

Neuer Inhalt