Skip to main content
Erschienen in: Quantum Information Processing 9/2020

01.08.2020

Asymmetric scaling scheme over the two dimensions of a quantum image

verfasst von: Ri-Gui Zhou, Yu Cheng, Xiaofang Qi, Han Yu, Nan Jiang

Erschienen in: Quantum Information Processing | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Although quantum image scaling algorithms have been widely studied in recent years, almost all of them require the quantum image to be enlarged or reduced simultaneously in the horizontal and vertical directions. However, the scaling schemes that enlarge the quantum image in one direction and shrink it in the other direction are rarely involved. In this paper, a quantum image scaling scheme based on the extension of the bilinear interpolation method is proposed to achieve asymmetric scaling over the two dimensions of a quantum image for the first time. Firstly, the improved novel-enhanced quantum representation of digital images (INEQR) is employed to represent a \( 2^{{n_{1} }} \times 2^{{n_{2} }} \) quantum image, and the bilinear interpolation is improved to use two adjacent pixels in the original image for interpolation. Then, the concrete circuits for the asymmetric scaling of quantum images are designed. Finally, the simulation results are given, and the complexity of the quantum circuits and the peak signal-to-noise ratio (PSNR) are used to quantitatively compare with the similar scheme proposed in another paper. The results show that the proposed scheme has lower computational complexity and better scaling effect than another scheme.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Beach, G., Lomont, C., Cohen, C.: Quantum image processing (QuIP). In: Proceedings—Applied Imagery Pattern Recognition Workshop (2004) Beach, G., Lomont, C., Cohen, C.: Quantum image processing (QuIP). In: Proceedings—Applied Imagery Pattern Recognition Workshop (2004)
3.
Zurück zum Zitat Venegas-Andraca, S.E., Bose, S.: Quantum computation and image processing: New trends in artificial intelligence. In: IJCAI International Joint Conference on Artificial Intelligence (2003) Venegas-Andraca, S.E., Bose, S.: Quantum computation and image processing: New trends in artificial intelligence. In: IJCAI International Joint Conference on Artificial Intelligence (2003)
4.
Zurück zum Zitat Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference on Quantum Information and Computation, pp. 137–147 (2003) Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference on Quantum Information and Computation, pp. 137–147 (2003)
5.
Zurück zum Zitat Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996) Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)
7.
Zurück zum Zitat Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9, 1–11 (2010)MathSciNetCrossRef Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9, 1–11 (2010)MathSciNetCrossRef
8.
Zurück zum Zitat Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011)MathSciNetCrossRef Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011)MathSciNetCrossRef
9.
Zurück zum Zitat Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013)ADSMathSciNetCrossRef Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013)ADSMathSciNetCrossRef
10.
Zurück zum Zitat Li, H.S., Qingxin, Z., Lan, S., Shen, C.Y., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12, 2269–2290 (2013)ADSMathSciNetCrossRef Li, H.S., Qingxin, Z., Lan, S., Shen, C.Y., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12, 2269–2290 (2013)ADSMathSciNetCrossRef
11.
Zurück zum Zitat Li, H.S., Zhu, Q., Zhou, R.G., Song, L., Yang, X.J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13, 991–1011 (2014)ADSMathSciNetCrossRef Li, H.S., Zhu, Q., Zhou, R.G., Song, L., Yang, X.J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13, 991–1011 (2014)ADSMathSciNetCrossRef
12.
Zurück zum Zitat Yan, F., Iliyasu, A.M., Venegas-andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15, 1–35 (2016)ADSMathSciNetCrossRef Yan, F., Iliyasu, A.M., Venegas-andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15, 1–35 (2016)ADSMathSciNetCrossRef
13.
Zurück zum Zitat Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40, (2010) Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40, (2010)
15.
Zurück zum Zitat Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14, 1559–1571 (2015)ADSMathSciNetCrossRef Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14, 1559–1571 (2015)ADSMathSciNetCrossRef
16.
Zurück zum Zitat Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14, 4001–4026 (2015)ADSMathSciNetCrossRef Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14, 4001–4026 (2015)ADSMathSciNetCrossRef
17.
Zurück zum Zitat Sang, J., Wang, S., Niu, X.: Quantum realization of the nearest-neighbor interpolation method for FRQI and NEQR. Quantum Inf. Process. 15, 37–64 (2016)ADSMathSciNetCrossRef Sang, J., Wang, S., Niu, X.: Quantum realization of the nearest-neighbor interpolation method for FRQI and NEQR. Quantum Inf. Process. 15, 37–64 (2016)ADSMathSciNetCrossRef
18.
Zurück zum Zitat Zhou, R.G., Hu, W., Fan, P., Ian, H.: Quantum realization of the bilinear interpolation method for NEQR. Sci. Rep. 7, (2017) Zhou, R.G., Hu, W., Fan, P., Ian, H.: Quantum realization of the bilinear interpolation method for NEQR. Sci. Rep. 7, (2017)
19.
Zurück zum Zitat Zhou, R.G., Liu, X., Luo, J.: Quantum Circuit Realization of the Bilinear Interpolation Method for GQIR. Int. J. Theor. Phys. 56, 2966–2980 (2017)MathSciNetCrossRef Zhou, R.G., Liu, X., Luo, J.: Quantum Circuit Realization of the Bilinear Interpolation Method for GQIR. Int. J. Theor. Phys. 56, 2966–2980 (2017)MathSciNetCrossRef
20.
Zurück zum Zitat Li, P., Liu, X.: Bilinear interpolation method for quantum images based on quantum Fourier transform. Int. J. Quantum Inf. 16, 1850031 (2018)MathSciNetCrossRef Li, P., Liu, X.: Bilinear interpolation method for quantum images based on quantum Fourier transform. Int. J. Quantum Inf. 16, 1850031 (2018)MathSciNetCrossRef
21.
Zurück zum Zitat Zhou, R., Hu, W., Luo, G., Liu, X., Fan, P.: Quantum realization of the nearest neighbor value interpolation method for INEQR. Quantum Inf. Process. 17, 166 (2018)ADSMathSciNetCrossRef Zhou, R., Hu, W., Luo, G., Liu, X., Fan, P.: Quantum realization of the nearest neighbor value interpolation method for INEQR. Quantum Inf. Process. 17, 166 (2018)ADSMathSciNetCrossRef
22.
Zurück zum Zitat Zhou, R.-G., Cheng, Y., Liu, D.: Quantum image scaling based on bilinear interpolation with arbitrary scaling ratio. Quantum Inf. Process. 18(9), 267 (2019)ADSCrossRef Zhou, R.-G., Cheng, Y., Liu, D.: Quantum image scaling based on bilinear interpolation with arbitrary scaling ratio. Quantum Inf. Process. 18(9), 267 (2019)ADSCrossRef
23.
Zurück zum Zitat Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13, 1223–1236 (2014)ADSMathSciNetCrossRef Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13, 1223–1236 (2014)ADSMathSciNetCrossRef
24.
Zurück zum Zitat Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13, 1545–1551 (2014)ADSMathSciNetCrossRef Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13, 1545–1551 (2014)ADSMathSciNetCrossRef
25.
Zurück zum Zitat Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert Image Scrambling. Int. J. Theor. Phys. 53, 2463–2484 (2014)CrossRef Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert Image Scrambling. Int. J. Theor. Phys. 53, 2463–2484 (2014)CrossRef
27.
Zurück zum Zitat Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. (Ny) 186, 126–149 (2012)MathSciNetCrossRef Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. (Ny) 186, 126–149 (2012)MathSciNetCrossRef
29.
Zurück zum Zitat Zhou, R.G., Hu, W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process. 16, 1–21 (2017)ADSMathSciNetCrossRef Zhou, R.G., Hu, W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process. 16, 1–21 (2017)ADSMathSciNetCrossRef
30.
Zurück zum Zitat Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52, 1802–1817 (2013)MathSciNetCrossRef Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52, 1802–1817 (2013)MathSciNetCrossRef
31.
Zurück zum Zitat Gonzalez, R.C., Woods, R.E.: Digital image processing. Prentice Hall, New Jersey (2007) Gonzalez, R.C., Woods, R.E.: Digital image processing. Prentice Hall, New Jersey (2007)
32.
Zurück zum Zitat Parker, J.A., Kenyon, R.V., Troxel, D.E.: Comparison of Interpolating Methods for Image Resampling. IEEE Trans. Med, Imaging (1983)CrossRef Parker, J.A., Kenyon, R.V., Troxel, D.E.: Comparison of Interpolating Methods for Image Resampling. IEEE Trans. Med, Imaging (1983)CrossRef
33.
Zurück zum Zitat Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412, 1406–1418 (2011)MathSciNetCrossRef Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412, 1406–1418 (2011)MathSciNetCrossRef
34.
Zurück zum Zitat Thapliyal, H., Ranganathan, N.: Design of efficient reversible binary subtractors based on a new reversible gate. In: Proc. 2009 IEEE Comput. Soc. Annu. Symp. VLSI, ISVLSI 2009, pp. 229–234 (2009) Thapliyal, H., Ranganathan, N.: Design of efficient reversible binary subtractors based on a new reversible gate. In: Proc. 2009 IEEE Comput. Soc. Annu. Symp. VLSI, ISVLSI 2009, pp. 229–234 (2009)
35.
Zurück zum Zitat Thapliyal, H., Ranganathan, N.: A new design of the reversible subtractor circuit. In: Proc. IEEE Conf. Nanotechnol, pp. 1430–1435 (2011) Thapliyal, H., Ranganathan, N.: A new design of the reversible subtractor circuit. In: Proc. IEEE Conf. Nanotechnol, pp. 1430–1435 (2011)
36.
Zurück zum Zitat Islam, M.S., Rahman, M.M., Begum, Z., Hafiz, M.Z.: Low cost quantum realization of reversible multiplier circuit. Inf. Technol. J. 8, 208–213 (2009)CrossRef Islam, M.S., Rahman, M.M., Begum, Z., Hafiz, M.Z.: Low cost quantum realization of reversible multiplier circuit. Inf. Technol. J. 8, 208–213 (2009)CrossRef
37.
Zurück zum Zitat Ruiz-Perez, L., Garcia-Escartin, J.C.: Quantum arithmetic with the quantum Fourier transform. Quantum Inf. Process. 16(6), 152 (2017)ADSMathSciNetCrossRef Ruiz-Perez, L., Garcia-Escartin, J.C.: Quantum arithmetic with the quantum Fourier transform. Quantum Inf. Process. 16(6), 152 (2017)ADSMathSciNetCrossRef
38.
Zurück zum Zitat Kotiyal, S., Thapliyal, H., Ranganathan, N.: Circuit for reversible quantum multiplier based on binary tree optimizing ancilla and garbage bits. In: Proc. IEEE Int. Conf. VLSI Des, pp. 545–550 (2014) Kotiyal, S., Thapliyal, H., Ranganathan, N.: Circuit for reversible quantum multiplier based on binary tree optimizing ancilla and garbage bits. In: Proc. IEEE Int. Conf. VLSI Des, pp. 545–550 (2014)
39.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
Metadaten
Titel
Asymmetric scaling scheme over the two dimensions of a quantum image
verfasst von
Ri-Gui Zhou
Yu Cheng
Xiaofang Qi
Han Yu
Nan Jiang
Publikationsdatum
01.08.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 9/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02837-9

Weitere Artikel der Ausgabe 9/2020

Quantum Information Processing 9/2020 Zur Ausgabe

Neuer Inhalt