Skip to main content
Top
Published in: Journal of Scientific Computing 3/2016

05-10-2015

Construction of Additive Semi-Implicit Runge–Kutta Methods with Low-Storage Requirements

Authors: Inmaculada Higueras, Teo Roldán

Published in: Journal of Scientific Computing | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Space discretization of some time-dependent partial differential equations gives rise to systems of ordinary differential equations in additive form whose terms have different stiffness properties. In these cases, implicit methods should be used to integrate the stiff terms while efficient explicit methods can be used for the non-stiff part of the problem. However, for systems with a large number of equations, memory storage requirement is also an important issue. When the high dimension of the problem compromises the computer memory capacity, it is important to incorporate low memory usage to some other properties of the scheme. In this paper we consider Additive Semi-Implicit Runge–Kutta (ASIRK) methods, a class of implicit-explicit Runge–Kutta methods for additive differential systems. We construct two second order 3-stage ASIRK schemes with low-storage requirements. Having in mind problems with stiffness parameters, besides accuracy and stability properties, we also impose stiff accuracy conditions. The numerical experiments done show the advantages of the new methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ascher, U., Ruuth, S., Spiteri, R.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)MathSciNetCrossRefMATH Ascher, U., Ruuth, S., Spiteri, R.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)MathSciNetCrossRefMATH
2.
go back to reference Boscarino, S.: Error analysis of IMEX Runge–Kutta methods derived from differential-algebraic systems. SIAM J. Numer. Anal. 45(4), 1600–1621 (2007)MathSciNetCrossRefMATH Boscarino, S.: Error analysis of IMEX Runge–Kutta methods derived from differential-algebraic systems. SIAM J. Numer. Anal. 45(4), 1600–1621 (2007)MathSciNetCrossRefMATH
3.
go back to reference Boscarino, S.: On an accurate third order implicit–explicit Runge–Kutta method for stiff problems. Appl. Numer. Math. 59(7), 1515–1528 (2009)MathSciNetCrossRefMATH Boscarino, S.: On an accurate third order implicit–explicit Runge–Kutta method for stiff problems. Appl. Numer. Math. 59(7), 1515–1528 (2009)MathSciNetCrossRefMATH
4.
go back to reference Boscarino, S., Russo, G.: On a class of uniformly accurate IMEX Runge–Kutta schemes and applications to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 31(3), 1926–1945 (2009)MathSciNetCrossRefMATH Boscarino, S., Russo, G.: On a class of uniformly accurate IMEX Runge–Kutta schemes and applications to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 31(3), 1926–1945 (2009)MathSciNetCrossRefMATH
5.
go back to reference Caflisch, R.E., Jin, S., Russo, G.: Uniformly accurate schemes for hyperbolic systems with relaxation. SIAM J. Numer. Anal. 34(1), 246–281 (1997)MathSciNetCrossRefMATH Caflisch, R.E., Jin, S., Russo, G.: Uniformly accurate schemes for hyperbolic systems with relaxation. SIAM J. Numer. Anal. 34(1), 246–281 (1997)MathSciNetCrossRefMATH
6.
go back to reference Calvo, M., Franco, J., Rández, L.: Minimum storage Runge–Kutta schemes for computational acoustics. Comput. Math. Appl. 45(1), 535–545 (2003)MathSciNetCrossRefMATH Calvo, M., Franco, J., Rández, L.: Minimum storage Runge–Kutta schemes for computational acoustics. Comput. Math. Appl. 45(1), 535–545 (2003)MathSciNetCrossRefMATH
7.
go back to reference Calvo, M., Franco, J.M., Montijano, J.I., Rndez, L.: On some new low storage implementations of time advancing Runge–Kutta methods. J. Comput. Appl. Math. 236(15), 3665–3675 (2012)MathSciNetCrossRefMATH Calvo, M., Franco, J.M., Montijano, J.I., Rndez, L.: On some new low storage implementations of time advancing Runge–Kutta methods. J. Comput. Appl. Math. 236(15), 3665–3675 (2012)MathSciNetCrossRefMATH
8.
go back to reference Carpenter, M.H., Kennedy, C.A.: Fourth-order 2n-storage Runge–Kutta schemes. Nasa Technical Memorandum 109112 (1994) Carpenter, M.H., Kennedy, C.A.: Fourth-order 2n-storage Runge–Kutta schemes. Nasa Technical Memorandum 109112 (1994)
9.
go back to reference Ferracina, L., Spijker, M.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58(11), 1675–1686 (2008)MathSciNetCrossRefMATH Ferracina, L., Spijker, M.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58(11), 1675–1686 (2008)MathSciNetCrossRefMATH
11.
go back to reference Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetCrossRefMATH Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetCrossRefMATH
12.
go back to reference Hairer, E.: Order conditions for numerical methods for partitioned ordinary differential equations. Numer. Math. 36(4), 431–445 (1981)MathSciNetCrossRefMATH Hairer, E.: Order conditions for numerical methods for partitioned ordinary differential equations. Numer. Math. 36(4), 431–445 (1981)MathSciNetCrossRefMATH
13.
go back to reference Happenhofer, N., Koch, O., Kupka, F.: IMEX Methods for the ANTARES Code. ASC Report 27 (2011) Happenhofer, N., Koch, O., Kupka, F.: IMEX Methods for the ANTARES Code. ASC Report 27 (2011)
14.
go back to reference Higueras, I., Mantas, J., Roldán, T.: Design and implementation of predictors for additive semi-implicit Runge–Kutta methods. SIAM J. Sci. Comput. 31(3), 2131–2150 (2009)MathSciNetCrossRefMATH Higueras, I., Mantas, J., Roldán, T.: Design and implementation of predictors for additive semi-implicit Runge–Kutta methods. SIAM J. Sci. Comput. 31(3), 2131–2150 (2009)MathSciNetCrossRefMATH
15.
go back to reference Hundsdorfer, W., Ruuth, S.J.: Imex extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225, 2016–2042 (2007)MathSciNetCrossRefMATH Hundsdorfer, W., Ruuth, S.J.: Imex extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225, 2016–2042 (2007)MathSciNetCrossRefMATH
16.
go back to reference Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003)MathSciNetCrossRefMATH Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003)MathSciNetCrossRefMATH
17.
go back to reference Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35(3), 177–219 (2000)MathSciNetCrossRefMATH Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35(3), 177–219 (2000)MathSciNetCrossRefMATH
18.
go back to reference Ketcheson, D.I.: Highly efficient strong stability-preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)MathSciNetCrossRefMATH Ketcheson, D.I.: Highly efficient strong stability-preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)MathSciNetCrossRefMATH
19.
20.
go back to reference Koch, O., Kupka, F., Löw-Baselli, B., Mayrhofer, A., Zaussinger, F.: SDIRK methods for the ANTARES code. ASC Report 32 (2010) Koch, O., Kupka, F., Löw-Baselli, B., Mayrhofer, A., Zaussinger, F.: SDIRK methods for the ANTARES code. ASC Report 32 (2010)
22.
go back to reference Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes for stiff systems of differential equations. Recent Trends Numer. Anal. 3, 269–289 (2000)MathSciNetMATH Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes for stiff systems of differential equations. Recent Trends Numer. Anal. 3, 269–289 (2000)MathSciNetMATH
23.
go back to reference Pareschi, L., Russo, G.: High order asymptotically strong-stability-preserving methods for hyperbolic systems with stiff relaxation. In: Hyperbolic Problems: Theory, Numerics, Applications, pp. 241–251. Springer: Berlin (2003) Pareschi, L., Russo, G.: High order asymptotically strong-stability-preserving methods for hyperbolic systems with stiff relaxation. In: Hyperbolic Problems: Theory, Numerics, Applications, pp. 241–251. Springer: Berlin (2003)
24.
go back to reference Shu, C., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetCrossRefMATH Shu, C., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetCrossRefMATH
25.
go back to reference Spiteri, R., Ruuth, S.: A new class of optimal high-order strong-stability preserving time-stepping schemes. SIAM J. Numer. Anal 40, 469–491 (2002)MathSciNetCrossRefMATH Spiteri, R., Ruuth, S.: A new class of optimal high-order strong-stability preserving time-stepping schemes. SIAM J. Numer. Anal 40, 469–491 (2002)MathSciNetCrossRefMATH
26.
go back to reference Van Der Houwen, P.J.: Construction of integration formulas for initial value problems. North Holland (1977) Van Der Houwen, P.J.: Construction of integration formulas for initial value problems. North Holland (1977)
28.
go back to reference Zhong, X.: Additive semi-implicit Runge–Kutta methods for computing high-speed nonequilibrium reactive flows. J. Comput. Phys. 128(1), 19–31 (1996)MathSciNetCrossRefMATH Zhong, X.: Additive semi-implicit Runge–Kutta methods for computing high-speed nonequilibrium reactive flows. J. Comput. Phys. 128(1), 19–31 (1996)MathSciNetCrossRefMATH
Metadata
Title
Construction of Additive Semi-Implicit Runge–Kutta Methods with Low-Storage Requirements
Authors
Inmaculada Higueras
Teo Roldán
Publication date
05-10-2015
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2016
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-015-0116-2

Other articles of this Issue 3/2016

Journal of Scientific Computing 3/2016 Go to the issue

Premium Partner