Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 11/2021

12-06-2021 | Research Article-Civil Engineering

Construction of Frozen Sandstone Creep Damage Model and Analysis of Influencing Factors Based on Fractional-Order Theory

Authors: Zuyong Li, Gengshe Yang, Yao Wei

Published in: Arabian Journal for Science and Engineering | Issue 11/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

During the construction of the freezing wall of the coal mine shaft, the long-term stability of the freezing wall is a key issue to control engineering safety. The creep deformation of frozen rock is one of the factors that cause the destruction of the frozen wall. Taking the Cretaceous saturated frozen sandstone as the research object, the creep mechanics test of frozen rock under different confining pressure conditions is carried out, and the strain–time curve clusters under different loading stress states are obtained. Based on the Riemann–Liouville-type integral function and borrowing from classic modeling ideas, a 5-element nonlinear creep damage constitutive equation considering low-temperature-damage-stress coupling is established, and the model verification is carried out. The results show: when the rock is in the elastic stage, the creep parameter \(E_{1}\) theory under each loading level should be exactly the same. But it shows a trend of increasing first and then decreasing, so the creep of frozen sandstone is a kind of nonlinear creep. The viscoelastic modulus \(E_{2}\) is a measure of the amount of deformation in the creep attenuation stage, indicating that it gradually decreases as the load factor increases. After the strain gradually increased to a certain fixed value, \(E_{1}\) remained basically constant. As the loading stress increases, the interior of the rock will undergo stages of compression, slippage, and recombination, and the friction between particles will increase, showing that the viscosity coefficients η1 and η2 gradually increase. The influence of the parameters \(\zeta\) and \(\gamma\) on the creep effect is analyzed through the results of the creep mechanics test. There is creep damage in the accelerated creep stage. As the load increases, the damage gradually expands. The same laws are shown under different confining pressure conditions. The research results can provide a theoretical model and the experimental basis for evaluating the instability and failure of the frozen wall induced by creep.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Goffart, T.V.; Vasil’ev, A.A.: Practical issues of safety in coal mines. Combust. Explo. Shock+ 55(4), 500–506 (2019)CrossRef Goffart, T.V.; Vasil’ev, A.A.: Practical issues of safety in coal mines. Combust. Explo. Shock+ 55(4), 500–506 (2019)CrossRef
2.
go back to reference Chu, C.; Muradian, N.: Safety and environmental implications of coal mining. Int. J. Environ. Pollut. 59(2–4), 250–268 (2016)CrossRef Chu, C.; Muradian, N.: Safety and environmental implications of coal mining. Int. J. Environ. Pollut. 59(2–4), 250–268 (2016)CrossRef
3.
go back to reference Tomanovic, Z.; Miladinovic, B.; Zivaljevic, S.: Criteria for defining the required duration of a creep test. Can. Geotech. J. 52(7), 883–889 (2015)CrossRef Tomanovic, Z.; Miladinovic, B.; Zivaljevic, S.: Criteria for defining the required duration of a creep test. Can. Geotech. J. 52(7), 883–889 (2015)CrossRef
4.
go back to reference Hashiba, K.; Fukui, K.: Twenty-year creep test with tuff under uniaxial compression. Geotech. Test J. 43(3), 800–808 (2020)CrossRef Hashiba, K.; Fukui, K.: Twenty-year creep test with tuff under uniaxial compression. Geotech. Test J. 43(3), 800–808 (2020)CrossRef
5.
go back to reference Hu, B.; Yang, S.Q.; Xu, P.; Cheng, J.L.: Cyclic loading-unloading creep behavior of composite layered specimens. Acta Geophys. 67(2), 449–464 (2019)CrossRef Hu, B.; Yang, S.Q.; Xu, P.; Cheng, J.L.: Cyclic loading-unloading creep behavior of composite layered specimens. Acta Geophys. 67(2), 449–464 (2019)CrossRef
6.
go back to reference Yang, W.D.; Duan, K.; Zhang, Q.Y.; Jiao, Y.Y.; Wang, S.G.: In situ creep tests on the long-term shear behaviors of a fault located at the dam foundation of Dagangshan hydropower station, China. Energy Sci. Eng. 8(1), 216–235 (2020)CrossRef Yang, W.D.; Duan, K.; Zhang, Q.Y.; Jiao, Y.Y.; Wang, S.G.: In situ creep tests on the long-term shear behaviors of a fault located at the dam foundation of Dagangshan hydropower station, China. Energy Sci. Eng. 8(1), 216–235 (2020)CrossRef
7.
go back to reference Luo, Z.S.; Li, J.L.; Wang, L.H.; Assefa, E.; Deng, H.F.: Study on the creep characteristics of sandstone under coupled stress-water pressure. Period Polytech. Civ. 63(4), 1038–1051 (2019) Luo, Z.S.; Li, J.L.; Wang, L.H.; Assefa, E.; Deng, H.F.: Study on the creep characteristics of sandstone under coupled stress-water pressure. Period Polytech. Civ. 63(4), 1038–1051 (2019)
8.
go back to reference Wang, X.G.; Yin, Y.P.; Wang, J.D.; Lian, B.Q.; Qiu, H.J.; Gu, T.F.: A nonstationary parameter model for the sandstone creep tests. Landslides 15(7), 1377–1389 (2018)CrossRef Wang, X.G.; Yin, Y.P.; Wang, J.D.; Lian, B.Q.; Qiu, H.J.; Gu, T.F.: A nonstationary parameter model for the sandstone creep tests. Landslides 15(7), 1377–1389 (2018)CrossRef
9.
go back to reference Gunther, R.M.; Salzer, K.; Popp, T.; Ludeling, C.: Steady-state creep of rock salt: improved approaches for lab determination and modelling. Rock Mech. Rock Eng. 48(6), 2603–2613 (2015)CrossRef Gunther, R.M.; Salzer, K.; Popp, T.; Ludeling, C.: Steady-state creep of rock salt: improved approaches for lab determination and modelling. Rock Mech. Rock Eng. 48(6), 2603–2613 (2015)CrossRef
10.
go back to reference Liu, Z.B.; Xie, S.Y.; Shao, J.F.; Conil, N.: Multi-step triaxial compressive creep behaviour and induced gas permeability change of clay-rich rock. Geotechnique 68(4), 281–289 (2018)CrossRef Liu, Z.B.; Xie, S.Y.; Shao, J.F.; Conil, N.: Multi-step triaxial compressive creep behaviour and induced gas permeability change of clay-rich rock. Geotechnique 68(4), 281–289 (2018)CrossRef
11.
go back to reference Andargoli, M.B.E.; Shahriar, K.; Ramezanzadeh, A.; Goshtasbi, K.: The analysis of dates obtained from long-term creep tests to determine creep coefficients of rock salt. B Eng. Geol. Environ. 78(3), 1617–1629 (2019)CrossRef Andargoli, M.B.E.; Shahriar, K.; Ramezanzadeh, A.; Goshtasbi, K.: The analysis of dates obtained from long-term creep tests to determine creep coefficients of rock salt. B Eng. Geol. Environ. 78(3), 1617–1629 (2019)CrossRef
12.
go back to reference Li, X.Z.; Shao, Z.S.; Wang, X.Y.: Research into the effects of micromechanical parameters on creep failure in brittle rocks. Arab. J. Geosci. 8(10), 7763–7769 (2015)CrossRef Li, X.Z.; Shao, Z.S.; Wang, X.Y.: Research into the effects of micromechanical parameters on creep failure in brittle rocks. Arab. J. Geosci. 8(10), 7763–7769 (2015)CrossRef
13.
go back to reference Liu, L.; Xu, W.Y.; Wang, H.L.; Wang, W.; Wang, R.B.: Permeability evolution of granite gneiss during triaxial creep tests. Rock Mech. Rock Eng. 49(9), 3455–3462 (2016)CrossRef Liu, L.; Xu, W.Y.; Wang, H.L.; Wang, W.; Wang, R.B.: Permeability evolution of granite gneiss during triaxial creep tests. Rock Mech. Rock Eng. 49(9), 3455–3462 (2016)CrossRef
14.
go back to reference Liu, Y.; Liu, C.W.; Kang, Y.M.; Ye, D.Y.: Experimental research on creep properties of limestone under fluid-solid coupling. Environ. Earth Sci. 73(1), 7011–7018 (2015)CrossRef Liu, Y.; Liu, C.W.; Kang, Y.M.; Ye, D.Y.: Experimental research on creep properties of limestone under fluid-solid coupling. Environ. Earth Sci. 73(1), 7011–7018 (2015)CrossRef
15.
go back to reference Jia, C.; Yu, J.; Zuo, J.; Eti-Inyenetrenchard, I.: The creep behaviour and permeability evolution of breccia lava in triaxial creep tests. Geotech. Lett. 9(2), 94–98 (2019)CrossRef Jia, C.; Yu, J.; Zuo, J.; Eti-Inyenetrenchard, I.: The creep behaviour and permeability evolution of breccia lava in triaxial creep tests. Geotech. Lett. 9(2), 94–98 (2019)CrossRef
16.
go back to reference Zhang, Y.; Liu, Z.B.; Xu, W.Y.; Shao, J.F.: Change in the permeability of clastic rock during multi-loading triaxial compressive creep tests. Geotech. Lett. 5(3), 167–172 (2015)CrossRef Zhang, Y.; Liu, Z.B.; Xu, W.Y.; Shao, J.F.: Change in the permeability of clastic rock during multi-loading triaxial compressive creep tests. Geotech. Lett. 5(3), 167–172 (2015)CrossRef
17.
go back to reference Zhu, W.C.; Li, S.H.; Li, S.; Niu, L.L.: Influence of dynamic disturbance on the creep of sandstone: An experimental study. Rock Mech. Rock Eng. 52(4), 1023–1039 (2019)CrossRef Zhu, W.C.; Li, S.H.; Li, S.; Niu, L.L.: Influence of dynamic disturbance on the creep of sandstone: An experimental study. Rock Mech. Rock Eng. 52(4), 1023–1039 (2019)CrossRef
18.
go back to reference Kumsar, H.; Aydan, O.; Tano, H.; Celik, S.B.; Ulusay, R.: An integrated geomechanical investigation, multi-parameter monitoring and analyses of babadag-gundogdu creep-like landslide. Rock Mech. Rock Eng. 49(6), 2277–2299 (2016)CrossRef Kumsar, H.; Aydan, O.; Tano, H.; Celik, S.B.; Ulusay, R.: An integrated geomechanical investigation, multi-parameter monitoring and analyses of babadag-gundogdu creep-like landslide. Rock Mech. Rock Eng. 49(6), 2277–2299 (2016)CrossRef
19.
go back to reference Wu, F.; Chen, J.; Zou, Q.L.: A nonlinear creep damage model for salt rock. Int. J. Damage Mech. 28(5), 758–771 (2019)CrossRef Wu, F.; Chen, J.; Zou, Q.L.: A nonlinear creep damage model for salt rock. Int. J. Damage Mech. 28(5), 758–771 (2019)CrossRef
20.
go back to reference Tang, H.; Wang, D.P.; Huang, R.Q.; Pei, X.J.; Chen, W.L.: A new rock creep model based on variable-order fractional derivatives and continuum damage mechanics. B Eng. Geol. Environ. 77(1), 375–383 (2018)CrossRef Tang, H.; Wang, D.P.; Huang, R.Q.; Pei, X.J.; Chen, W.L.: A new rock creep model based on variable-order fractional derivatives and continuum damage mechanics. B Eng. Geol. Environ. 77(1), 375–383 (2018)CrossRef
21.
go back to reference Wang, J.B.; Liu, X.R.; Song, Z.P.; Shao, Z.S.: An improved maxwell creep model for salt rock. Geomech. Eng. 9(4), 499–511 (2015)CrossRef Wang, J.B.; Liu, X.R.; Song, Z.P.; Shao, Z.S.: An improved maxwell creep model for salt rock. Geomech. Eng. 9(4), 499–511 (2015)CrossRef
22.
go back to reference Wang, J.B.; Liu, X.R.; Liu, X.J.; Huang, M.: Creep properties and damage model for salt rock under low-frequency cyclic loading. Geomech. Eng. 7(5), 569–587 (2014)CrossRef Wang, J.B.; Liu, X.R.; Liu, X.J.; Huang, M.: Creep properties and damage model for salt rock under low-frequency cyclic loading. Geomech. Eng. 7(5), 569–587 (2014)CrossRef
23.
go back to reference Liu, H.Z.; Xie, H.Q.; He, J.D.; Xiao, M.L.; Zhuo, L.: Nonlinear creep damage constitutive model for soft rocks. Mech Time Depend Mater. 21(1), 73–96 (2017)CrossRef Liu, H.Z.; Xie, H.Q.; He, J.D.; Xiao, M.L.; Zhuo, L.: Nonlinear creep damage constitutive model for soft rocks. Mech Time Depend Mater. 21(1), 73–96 (2017)CrossRef
24.
go back to reference Liu, J.S.H.; Jing, H.W.; Meng, B.; Wang, L.G.; Yang, J.J.; Zhang, X.F.: A four-element fractional creep model of weakly cemented soft rock. B Eng. Geol. Environ. 79(10), 5569–5584 (2020)CrossRef Liu, J.S.H.; Jing, H.W.; Meng, B.; Wang, L.G.; Yang, J.J.; Zhang, X.F.: A four-element fractional creep model of weakly cemented soft rock. B Eng. Geol. Environ. 79(10), 5569–5584 (2020)CrossRef
25.
go back to reference Yan, B.Q.; Guo, Q.F.; Ren, F.H.; Cai, M.F.: Modified Nishihara model and experimental verification of deep rock mass under the water-rock interaction. Int. J .Rock Mech. Min. 128, 104250 (2020)CrossRef Yan, B.Q.; Guo, Q.F.; Ren, F.H.; Cai, M.F.: Modified Nishihara model and experimental verification of deep rock mass under the water-rock interaction. Int. J .Rock Mech. Min. 128, 104250 (2020)CrossRef
26.
go back to reference Hashiba, K.; Fukui, K.: Time-dependent behaviors of granite: loading-rate dependence, creep, and relaxation. Rock Mech. Rock Eng. 49(7), 2569–2580 (2016)CrossRef Hashiba, K.; Fukui, K.: Time-dependent behaviors of granite: loading-rate dependence, creep, and relaxation. Rock Mech. Rock Eng. 49(7), 2569–2580 (2016)CrossRef
27.
go back to reference Wu, L.Z.; Li, S.H.; Sun, P.; Huang, R.Q.; Li, B.: Shear creep tests on fissured mudstone and an improved time-dependent model. Pure Appl. Geophys. 176(11), 4797–4808 (2019)CrossRef Wu, L.Z.; Li, S.H.; Sun, P.; Huang, R.Q.; Li, B.: Shear creep tests on fissured mudstone and an improved time-dependent model. Pure Appl. Geophys. 176(11), 4797–4808 (2019)CrossRef
28.
go back to reference Jia, S.P.; Wen, C.X.; Wu, B.S.: A nonlinear elasto-viscoplastic model for clayed rock and its application to stability analysis of nuclear waste repository. Energy Sci. Eng. 8(1), 150–165 (2020)CrossRef Jia, S.P.; Wen, C.X.; Wu, B.S.: A nonlinear elasto-viscoplastic model for clayed rock and its application to stability analysis of nuclear waste repository. Energy Sci. Eng. 8(1), 150–165 (2020)CrossRef
29.
go back to reference Li, S.Y.; Urai, J.L.: Rheology of rock salt for salt tectonics modeling. Petrol Sci. 13(4), 712–724 (2016)CrossRef Li, S.Y.; Urai, J.L.: Rheology of rock salt for salt tectonics modeling. Petrol Sci. 13(4), 712–724 (2016)CrossRef
30.
go back to reference Song, Z.P.; Yang, T.T.; Jiang, A.N.; Zhang, D.F.; Jiang, Z.B.: Experimental investigation and numerical simulation of surrounding rock creep for deep mining tunnels. J. S. Afr. I Min. Metall. 116(12), 1181–1188 (2016)CrossRef Song, Z.P.; Yang, T.T.; Jiang, A.N.; Zhang, D.F.; Jiang, Z.B.: Experimental investigation and numerical simulation of surrounding rock creep for deep mining tunnels. J. S. Afr. I Min. Metall. 116(12), 1181–1188 (2016)CrossRef
31.
go back to reference Li, H.; William, N.T.; Daemen, J.; Zhou, J.; Ma, C.K.: A power function model for simulating creep mechanical properties of salt rock. J. Cent. South Univ. 27(2), 578–591 (2020)CrossRef Li, H.; William, N.T.; Daemen, J.; Zhou, J.; Ma, C.K.: A power function model for simulating creep mechanical properties of salt rock. J. Cent. South Univ. 27(2), 578–591 (2020)CrossRef
Metadata
Title
Construction of Frozen Sandstone Creep Damage Model and Analysis of Influencing Factors Based on Fractional-Order Theory
Authors
Zuyong Li
Gengshe Yang
Yao Wei
Publication date
12-06-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 11/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05828-9

Other articles of this Issue 11/2021

Arabian Journal for Science and Engineering 11/2021 Go to the issue

Premium Partners