Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 8/2016

21-06-2016

Continuous Modeling of Calcium Transport Through Biological Membranes

Authors: J. J. Jasielec, R. Filipek, K. Szyszkiewicz, T. Sokalski, A. Lewenstam

Published in: Journal of Materials Engineering and Performance | Issue 8/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Bobacka, A. Ivaska, and A. Lewenstam, Potentiometric Ion Sensors, Chem. Rev., 2008, 108(2), p 329–351CrossRef J. Bobacka, A. Ivaska, and A. Lewenstam, Potentiometric Ion Sensors, Chem. Rev., 2008, 108(2), p 329–351CrossRef
2.
go back to reference K. Krabbenhøft and J. Krabbenhøft, Application of the Poisson–Nernst–Planck Equations to the Migration Test, Cem. Concr. Res., 2008, 38, p 77–88CrossRef K. Krabbenhøft and J. Krabbenhøft, Application of the Poisson–Nernst–Planck Equations to the Migration Test, Cem. Concr. Res., 2008, 38, p 77–88CrossRef
3.
go back to reference B. Roux, The Membrane Potential and Its Representation by a Constant Electric Field in Computer Simulations, Biophys. J., 2008, 95, p 4205–4216CrossRef B. Roux, The Membrane Potential and Its Representation by a Constant Electric Field in Computer Simulations, Biophys. J., 2008, 95, p 4205–4216CrossRef
4.
go back to reference C. Kutzner, H. Grubmuller, B.L. de Groot, and U. Zachariae, Computational Electrophysiology: The Molecular Dynamics of Ion Channel Permeation and Selectivity in Atomistic Detail, Biophys. J., 2011, 101, p 809–817CrossRef C. Kutzner, H. Grubmuller, B.L. de Groot, and U. Zachariae, Computational Electrophysiology: The Molecular Dynamics of Ion Channel Permeation and Selectivity in Atomistic Detail, Biophys. J., 2011, 101, p 809–817CrossRef
5.
go back to reference M. Jensen, W. Borhani, K. Lindorff-Larsen, P. Maragakis, V. Jogini, M.P. Eastwood, R.O. Dror, and D.E. Shaw, Principles of Conduction and Hydrophobic Gating in K+ Channels, Proc. Natl. Acad. Sci. USA, 2010, 107, p 5833–5838CrossRef M. Jensen, W. Borhani, K. Lindorff-Larsen, P. Maragakis, V. Jogini, M.P. Eastwood, R.O. Dror, and D.E. Shaw, Principles of Conduction and Hydrophobic Gating in K+ Channels, Proc. Natl. Acad. Sci. USA, 2010, 107, p 5833–5838CrossRef
6.
go back to reference A. Bidon-Chanal, E.-M. Krammer, D. Blot, E. Pebay-Peyroula, C. Chipot, S. Ravaud, and F. Dehez, How do Membrane Transporters Sense pH? The Case of the Mitochondrial ADP-ATP Carrier, J. Phys. Chem. Lett., 2013, 4, p 3787–3791CrossRef A. Bidon-Chanal, E.-M. Krammer, D. Blot, E. Pebay-Peyroula, C. Chipot, S. Ravaud, and F. Dehez, How do Membrane Transporters Sense pH? The Case of the Mitochondrial ADP-ATP Carrier, J. Phys. Chem. Lett., 2013, 4, p 3787–3791CrossRef
7.
go back to reference B. Roux, T. Allen, S. Berneche, and W. Im, Theoretical and Computational Models of Biological Ion Channels, Q. Rev. Biophys., 2004, 37(1), p 15–103CrossRef B. Roux, T. Allen, S. Berneche, and W. Im, Theoretical and Computational Models of Biological Ion Channels, Q. Rev. Biophys., 2004, 37(1), p 15–103CrossRef
8.
go back to reference E.-M. Krammer, F. Homblé, and M. Prévost, Molecular origin of VDAC Selectivity Towards Inorganic Ions: A Combined Molecular and Brownian Dynamics Study, Biochem. Biophys. Acta, 2013, 1828, p 1284–1292CrossRef E.-M. Krammer, F. Homblé, and M. Prévost, Molecular origin of VDAC Selectivity Towards Inorganic Ions: A Combined Molecular and Brownian Dynamics Study, Biochem. Biophys. Acta, 2013, 1828, p 1284–1292CrossRef
9.
go back to reference B. Corry, S. Kuyucak, and S.-H. Ghung, Dielectric Self-Energy in Poisson-Boltzmann and Poisson-Nernst-Planck Models of Ion Channels, Biophys. J., 2003, 84, p 3594–3606CrossRef B. Corry, S. Kuyucak, and S.-H. Ghung, Dielectric Self-Energy in Poisson-Boltzmann and Poisson-Nernst-Planck Models of Ion Channels, Biophys. J., 2003, 84, p 3594–3606CrossRef
10.
go back to reference R.S. Eisenberg, From Structure to Function in Open Ionic Channels, J. Membr. Biol., 1999, 171(1), p 1–24CrossRef R.S. Eisenberg, From Structure to Function in Open Ionic Channels, J. Membr. Biol., 1999, 171(1), p 1–24CrossRef
11.
go back to reference I. Valent, P. Petrovič, P. Neogrády, I. Schreiber, and M. Marek, Electrodiffusion Kinetics of Ionic Transport in a Simple Membrane Channel, J. Phys. Chem. B, 2013, 117, p 14283–14293CrossRef I. Valent, P. Petrovič, P. Neogrády, I. Schreiber, and M. Marek, Electrodiffusion Kinetics of Ionic Transport in a Simple Membrane Channel, J. Phys. Chem. B, 2013, 117, p 14283–14293CrossRef
12.
go back to reference B. Bożek, A. Lewenstam, K. Tkacz-Śmiech, and M. Danielewski, Electrochemistry of Symmetrical Ion Channel: Three-Dimensional Nernst-Planck-Poisson Model, ECS Trans., 2014, 61(15), p 11–20CrossRef B. Bożek, A. Lewenstam, K. Tkacz-Śmiech, and M. Danielewski, Electrochemistry of Symmetrical Ion Channel: Three-Dimensional Nernst-Planck-Poisson Model, ECS Trans., 2014, 61(15), p 11–20CrossRef
13.
go back to reference R. Hansford, Relation Between Mitochondrial Calcium Transport and Control of Energy Metabolism, Rev. Physiol. Biochem. Pharmacol., 1985, 102, p 2–72 R. Hansford, Relation Between Mitochondrial Calcium Transport and Control of Energy Metabolism, Rev. Physiol. Biochem. Pharmacol., 1985, 102, p 2–72
14.
go back to reference E. Carafoli, Intracellular Calcium Homeostasis, Ann. Rev. Biochem., 1987, 56, p 395–435CrossRef E. Carafoli, Intracellular Calcium Homeostasis, Ann. Rev. Biochem., 1987, 56, p 395–435CrossRef
15.
go back to reference M. Crompton, Role of Mitochondria in Intracellular Calcium Regulation, Intracellular Calcium Regulation, F. Bronner, Ed, Alan R. Liss, New York, 1990, p 181–209. M. Crompton, Role of Mitochondria in Intracellular Calcium Regulation, Intracellular Calcium Regulation, F. Bronner, Ed, Alan R. Liss, New York, 1990, p 181–209.
16.
go back to reference J.G. McCormack, A.P. Halestrap, and R.M. Denton, Role of Calcium Ions in Regulation of Mammalian Intramitochondrial Metabolism, Physiol. Rev., 1990, 70(2), p 391–420 J.G. McCormack, A.P. Halestrap, and R.M. Denton, Role of Calcium Ions in Regulation of Mammalian Intramitochondrial Metabolism, Physiol. Rev., 1990, 70(2), p 391–420
17.
go back to reference M.R. Duchen, MRCa(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons, Biochem J., 1992, 283 (Part 1), p 41-50. M.R. Duchen, MRCa(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons, Biochem J., 1992, 283 (Part 1), p 41-50.
18.
go back to reference S.S. Kannurpatti, B.G. Sanganahalli, P. Herman, and F. Hyder, Role of Mitochondrial Calcium Uptake Homeostasis in Resting State fMRI, Brain Networks, NMR Biomed., 2015, 28(11), p 1579–1588CrossRef S.S. Kannurpatti, B.G. Sanganahalli, P. Herman, and F. Hyder, Role of Mitochondrial Calcium Uptake Homeostasis in Resting State fMRI, Brain Networks, NMR Biomed., 2015, 28(11), p 1579–1588CrossRef
19.
go back to reference K. Dołowy, Warsaw University of Life Sciences - private communication 2010-2013. K. Dołowy, Warsaw University of Life Sciences - private communication 2010-2013.
20.
go back to reference H. Chang and G. Jaffé, Polarization in Electrolyte Solutions. Part I: Theory, J. Chem. Phys., 1952, 20, p 1071–1077CrossRef H. Chang and G. Jaffé, Polarization in Electrolyte Solutions. Part I: Theory, J. Chem. Phys., 1952, 20, p 1071–1077CrossRef
21.
go back to reference W.E. Morf, The Principles of Ion-Selective Electrodes and of Membrane Transport, 1st ed., Akadémiai Kiadó, Budapest, 1981, p 123 W.E. Morf, The Principles of Ion-Selective Electrodes and of Membrane Transport, 1st ed., Akadémiai Kiadó, Budapest, 1981, p 123
22.
go back to reference W.E. Schiesser, The Numerical Method of Lines: Integration of Partial Differential Equations, Math. Comput., 1993, 60(201), p 433–437CrossRef W.E. Schiesser, The Numerical Method of Lines: Integration of Partial Differential Equations, Math. Comput., 1993, 60(201), p 433–437CrossRef
23.
go back to reference A.C. Hindmarsh, LSODE and LSODI, Two Initial Value Ordinary Differential Equation Solvers, ACM Signum Newslett., 1980, 15, p 10–11CrossRef A.C. Hindmarsh, LSODE and LSODI, Two Initial Value Ordinary Differential Equation Solvers, ACM Signum Newslett., 1980, 15, p 10–11CrossRef
24.
go back to reference W.E. Morf, E. Pretsch, and N.F. De Rooij, Theoretical Treatment and Numerical Simulation of Potential and Concentration Profiles in Extremely Thin Non-Electroneutral Membranes Used for Ion-Selective Electrodes, J. Electroanal. Chem., 2010, 641(1), p 45–56CrossRef W.E. Morf, E. Pretsch, and N.F. De Rooij, Theoretical Treatment and Numerical Simulation of Potential and Concentration Profiles in Extremely Thin Non-Electroneutral Membranes Used for Ion-Selective Electrodes, J. Electroanal. Chem., 2010, 641(1), p 45–56CrossRef
Metadata
Title
Continuous Modeling of Calcium Transport Through Biological Membranes
Authors
J. J. Jasielec
R. Filipek
K. Szyszkiewicz
T. Sokalski
A. Lewenstam
Publication date
21-06-2016
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 8/2016
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2160-y

Other articles of this Issue 8/2016

Journal of Materials Engineering and Performance 8/2016 Go to the issue

Premium Partners