Skip to main content
Top

2019 | OriginalPaper | Chapter

25. Continuum Homogenization of Fractal Media

Authors : Martin Ostoja-Starzewski, Jun Li, Paul N. Demmie

Published in: Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter reviews the modeling of fractal materials by homogenized continuum mechanics using calculus in non-integer dimensional spaces. The approach relies on expressing the global balance laws in terms of fractional integrals and, then, converting them to integer-order integrals in conventional (Euclidean) space. Via localization, this allows development of local balance laws of fractal media (continuity, linear and angular momenta, energy, and second law) and, in case of elastic responses, formulation of wave equations in several settings (1D and 3D wave motions, fractal Timoshenko beam, and elastodynamics under finite strains). Next, follows an account of extremum and variational principles, and fracture mechanics. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions and reduce to conventional forms for continuous media with Euclidean geometries upon setting the dimensions to integers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference A.S. Balankin, O. Susarrey, C.A. Mora Santos, J. Patíno, A. Yogues, E.I. García, Stress concentration and size effect in fracture of notched heterogeneous material. Phys. Rev. E 83, 015101(R) (2011) A.S. Balankin, O. Susarrey, C.A. Mora Santos, J. Patíno, A. Yogues, E.I. García, Stress concentration and size effect in fracture of notched heterogeneous material. Phys. Rev. E 83, 015101(R) (2011)
go back to reference M.F. Barnsley, Fractals Everywhere (Morgan Kaufmann, San Francisco, 1993)MATH M.F. Barnsley, Fractals Everywhere (Morgan Kaufmann, San Francisco, 1993)MATH
go back to reference A. Carpinteri, B. Chiaia, P.A. Cornetti, A disordered microstructure material model based on fractal geometry and fractional calculus. ZAMP 84, 128–135 (2004)MathSciNetMATH A. Carpinteri, B. Chiaia, P.A. Cornetti, A disordered microstructure material model based on fractal geometry and fractional calculus. ZAMP 84, 128–135 (2004)MathSciNetMATH
go back to reference A. Carpinteri, N. Pugno, Are scaling laws on strength of solids related to mechanics or to geometry? Nat. Mater. 4, 421–23 (2005)CrossRef A. Carpinteri, N. Pugno, Are scaling laws on strength of solids related to mechanics or to geometry? Nat. Mater. 4, 421–23 (2005)CrossRef
go back to reference P.N. Demmie, Ostoja-Starzewski, Waves in fractal media. J. Elast. 104, 187–204 (2011)MathSciNet P.N. Demmie, Ostoja-Starzewski, Waves in fractal media. J. Elast. 104, 187–204 (2011)MathSciNet
go back to reference K. Falconer, Fractal Geometry: Mathematical Foundations and Applications (Wiley, Chichester, 2003).CrossRef K. Falconer, Fractal Geometry: Mathematical Foundations and Applications (Wiley, Chichester, 2003).CrossRef
go back to reference E.E. Gdoutos, Fracture Mechanics: An Introduction (Kluwer Academic Publishers, Dordrecht, 1993)CrossRef E.E. Gdoutos, Fracture Mechanics: An Introduction (Kluwer Academic Publishers, Dordrecht, 1993)CrossRef
go back to reference H.M. Hastings, G. Sugihara, Fractals: A User’s Guide for the Natural Sciences (Oxford Science Publications, Oxford, 1993)MATH H.M. Hastings, G. Sugihara, Fractals: A User’s Guide for the Natural Sciences (Oxford Science Publications, Oxford, 1993)MATH
go back to reference H. Joumaa, M. Ostoja-Starzewski, On the wave propagation in isotropic fractal media. ZAMP 62, 1117–1129 (2011)MathSciNetMATH H. Joumaa, M. Ostoja-Starzewski, On the wave propagation in isotropic fractal media. ZAMP 62, 1117–1129 (2011)MathSciNetMATH
go back to reference H. Joumaa, M. Ostoja-Starzewski, Acoustic-elastodynamic interaction in isotropic fractal media. Eur. Phys. J. Spec. Top. 222, 1949–1958 (2013)CrossRef H. Joumaa, M. Ostoja-Starzewski, Acoustic-elastodynamic interaction in isotropic fractal media. Eur. Phys. J. Spec. Top. 222, 1949–1958 (2013)CrossRef
go back to reference H. Joumaa, M. Ostoja-Starzewski, P.N. Demmie, Elastodynamics in micropolar fractal solids. Math. Mech. Solids 19(2), 117–134 (2014)MathSciNetCrossRef H. Joumaa, M. Ostoja-Starzewski, P.N. Demmie, Elastodynamics in micropolar fractal solids. Math. Mech. Solids 19(2), 117–134 (2014)MathSciNetCrossRef
go back to reference H. Joumaa, M. Ostoja-Starzewski, On the dilatational wave motion in anisotropic fractal solids. Math. Comput. Simul. 127, 114–130 (2016)MathSciNetCrossRef H. Joumaa, M. Ostoja-Starzewski, On the dilatational wave motion in anisotropic fractal solids. Math. Comput. Simul. 127, 114–130 (2016)MathSciNetCrossRef
go back to reference G. Jumarie, On the representation of fractional Brownian motion as an integral with respect to (dt)a. Appl. Math. Lett. 18, 739–748 (2005)MathSciNetCrossRef G. Jumarie, On the representation of fractional Brownian motion as an integral with respect to (dt)a. Appl. Math. Lett. 18, 739–748 (2005)MathSciNetCrossRef
go back to reference G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions. Appl. Math. Lett. 22(3), 378–385 (2009)MathSciNetCrossRef G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions. Appl. Math. Lett. 22(3), 378–385 (2009)MathSciNetCrossRef
go back to reference A. Le Méhauté, Fractal Geometry: Theory and Applications (CRC Press, Boca Raton, 1991)MATH A. Le Méhauté, Fractal Geometry: Theory and Applications (CRC Press, Boca Raton, 1991)MATH
go back to reference J. Li, M. Ostoja-Starzewski, Fractal materials, beams and fracture mechanics. ZAMP 60, 1–12 (2009a)MathSciNetMATH J. Li, M. Ostoja-Starzewski, Fractal materials, beams and fracture mechanics. ZAMP 60, 1–12 (2009a)MathSciNetMATH
go back to reference J. Li, M. Ostoja-Starzewski, Fractal solids, product measures and fractional wave equations. Proc. R. Soc. A 465, 2521–2536 (2009b); Errata (2010) J. Li, M. Ostoja-Starzewski, Fractal solids, product measures and fractional wave equations. Proc. R. Soc. A 465, 2521–2536 (2009b); Errata (2010)
go back to reference J. Li, M. Ostoja-Starzewski, Fractal solids, product measures and continuum mechanics, chapter 33, in Mechanics of Generalized Continua: One Hundred Years After the Cosserats, ed. by G.A. Maugin, A.V. Metrikine (Springer, New York, 2010), pp. 315–323CrossRef J. Li, M. Ostoja-Starzewski, Fractal solids, product measures and continuum mechanics, chapter 33, in Mechanics of Generalized Continua: One Hundred Years After the Cosserats, ed. by G.A. Maugin, A.V. Metrikine (Springer, New York, 2010), pp. 315–323CrossRef
go back to reference J. Li, M. Ostoja-Starzewski, Micropolar continuum mechanics of fractal media. Int. J. Eng. Sci. (A.C. Eringen Spec. Issue) 49, 1302–1310 (2011)MathSciNetCrossRef J. Li, M. Ostoja-Starzewski, Micropolar continuum mechanics of fractal media. Int. J. Eng. Sci. (A.C. Eringen Spec. Issue) 49, 1302–1310 (2011)MathSciNetCrossRef
go back to reference J. Li, M. Ostoja-Starzewski, Edges of Saturn’s rings are fractal. SpringerPlus 4, 158 (2015). arXiv:1207.0155 (2012) J. Li, M. Ostoja-Starzewski, Edges of Saturn’s rings are fractal. SpringerPlus 4, 158 (2015). arXiv:1207.0155 (2012)
go back to reference B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman & Co, NewYork, 1982)MATH B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman & Co, NewYork, 1982)MATH
go back to reference G.A. Maugin, The Thermomechanics of Nonlinear Irreversible Behaviours (World Scientific Pub. Co., Singapore, 1999)CrossRef G.A. Maugin, The Thermomechanics of Nonlinear Irreversible Behaviours (World Scientific Pub. Co., Singapore, 1999)CrossRef
go back to reference G.A. Maugin, Non-classical Continuum Mechanics: A Dictionary (Springer, Singapore, 2016)MATH G.A. Maugin, Non-classical Continuum Mechanics: A Dictionary (Springer, Singapore, 2016)MATH
go back to reference W. Nowacki, Theory of Asymmetric Elasticity (Pergamon Press/PWN − Polish Sci. Publ., Oxford/Warszawa, 1986) W. Nowacki, Theory of Asymmetric Elasticity (Pergamon Press/PWN − Polish Sci. Publ., Oxford/Warszawa, 1986)
go back to reference K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, San Diego, 1974)MATH K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, San Diego, 1974)MATH
go back to reference M. Ostoja-Starzewski, Fracture of brittle micro-beams. ASME J. Appl. Mech. 71, 424–427 (2004)CrossRef M. Ostoja-Starzewski, Fracture of brittle micro-beams. ASME J. Appl. Mech. 71, 424–427 (2004)CrossRef
go back to reference M. Ostoja-Starzewski, Microstructural Randomness and Scaling in Mechanics of Materials (CRC Press, Boca Raton, 2008b)MATH M. Ostoja-Starzewski, Microstructural Randomness and Scaling in Mechanics of Materials (CRC Press, Boca Raton, 2008b)MATH
go back to reference M. Ostoja-Starzewski, Extremum and variational principles for elastic and inelastic media with fractal geometries. Acta Mech. 205, 161–170 (2009)CrossRef M. Ostoja-Starzewski, Extremum and variational principles for elastic and inelastic media with fractal geometries. Acta Mech. 205, 161–170 (2009)CrossRef
go back to reference M. Ostoja-Starzewski, J. Li, H. Joumaa, P.N. Demmie, From fractal media to continuum mechanics. ZAMM 94(5), 373–401 (2014)MathSciNetCrossRef M. Ostoja-Starzewski, J. Li, H. Joumaa, P.N. Demmie, From fractal media to continuum mechanics. ZAMM 94(5), 373–401 (2014)MathSciNetCrossRef
go back to reference M. Ostoja-Starzewski, S. Kale, P. Karimi, A. Malyarenko, B. Raghavan, S.I. Ranganathan, J. Zhang, Scaling to RVE in random media. Adv. Appl. Mech. 49, 111–211 (2016)CrossRef M. Ostoja-Starzewski, S. Kale, P. Karimi, A. Malyarenko, B. Raghavan, S.I. Ranganathan, J. Zhang, Scaling to RVE in random media. Adv. Appl. Mech. 49, 111–211 (2016)CrossRef
go back to reference D. Stoyan, H. Stoyan, Fractals, Random Shapes and Point Fields (Wiley, Chichester, 1994)MATH D. Stoyan, H. Stoyan, Fractals, Random Shapes and Point Fields (Wiley, Chichester, 1994)MATH
go back to reference V.E. Tarasov, Wave equation for fractal solid string. Mod. Phys. Lett. B 19(15), 721–728 (2005b)CrossRef V.E. Tarasov, Wave equation for fractal solid string. Mod. Phys. Lett. B 19(15), 721–728 (2005b)CrossRef
go back to reference V.E. Tarasov, Continuous medium model for fractal media. Phys. Lett. A 336, 167–174 (2005c)CrossRef V.E. Tarasov, Continuous medium model for fractal media. Phys. Lett. A 336, 167–174 (2005c)CrossRef
go back to reference V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, Berlin, 2010)CrossRef V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, Berlin, 2010)CrossRef
go back to reference V.E. Tarasov, Anisotropic fractal media by vector calculus in non-integer dimensional space. J. Math. Phys. 55, 083510-1-20 (2014)MathSciNetCrossRef V.E. Tarasov, Anisotropic fractal media by vector calculus in non-integer dimensional space. J. Math. Phys. 55, 083510-1-20 (2014)MathSciNetCrossRef
go back to reference V.E. Tarasov, Electromagnetic waves in non-integer dimensional spaces and fractals. Chaos, Solitons Fractals 81, 38–42 (2015a)MathSciNetCrossRef V.E. Tarasov, Electromagnetic waves in non-integer dimensional spaces and fractals. Chaos, Solitons Fractals 81, 38–42 (2015a)MathSciNetCrossRef
go back to reference V.E. Tarasov, Vector calculus in non-integer dimensional space and its applications to fractal media. Commun. Nonlinear Sci. Numer. Simul. 20, 360–374 (2015b)MathSciNetCrossRef V.E. Tarasov, Vector calculus in non-integer dimensional space and its applications to fractal media. Commun. Nonlinear Sci. Numer. Simul. 20, 360–374 (2015b)MathSciNetCrossRef
go back to reference H. Ziegler, An Introduction to Thermomechanics (North-Holland, Amsterdam, 1983)MATH H. Ziegler, An Introduction to Thermomechanics (North-Holland, Amsterdam, 1983)MATH
Metadata
Title
Continuum Homogenization of Fractal Media
Authors
Martin Ostoja-Starzewski
Jun Li
Paul N. Demmie
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-58729-5_18

Premium Partners