Skip to main content
Top

2016 | OriginalPaper | Chapter

Continuum Mechanical Description of an Extrinsic and Autonomous Self-Healing Material Based on the Theory of Porous Media

Authors : Steffen Specht, Joachim Bluhm, Jörg Schröder

Published in: Self-healing Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polymers and polymeric composites are used in many engineering applications, but these materials can spontaneously lose structural integrity as a result of microdamage caused by stress peaks during service. This internal microdamage is hard to detect and nearly impossible to repair. To extend the lifetime of such materials and save maintenance costs, self-healing mechanisms can be applied that are able to repair internal microdamage during the usual service load. This can be realized, for example, by incorporating microcapsules filled with monomer and dispersed catalysts into the polymeric matrix material. If a crack occurs, the monomer flows into the crack, reacts with the catalysts, and closes the crack.
This contribution focuses on the development of a thermodynamically consistent constitutive model that is able to describe the damage and healing behavior of a microcapsule-based self-healing material. The material under investigation is an epoxy matrix with microencapsulated dicyclopentadiene healing agents and dispersed Grubbs’ catalysts. The simulation of such a multiphase material is numerically very expensive if the microstructure is to be completely resolved. To overcome this, a homogenization technique can be applied to decrease the computational costs of the simulation. Here, the theoretical framework is based on the theory of porous media, which is a macroscopic continuum mechanical homogenization approach. The developed five-phase model consists of solid matrix material with dispersed catalysts, liquid healing agents, solidified healed material, and gas phase. A discontinuous damage model is used for the description of the damage behavior, and healing is simulated by a phase transition between the liquid-like healing agents and the solidified healed material. Applicability of the developed model is shown by means of numerical simulations of the global damage and healing behavior of a tapered double cantilever beam, as well as simulations of the flow behavior of the healing agents at the microscale.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference van der Zwaag S (2007) Self healing materials: an alternative approach to 20 centuries of materials science. Springer, DordrechtCrossRef van der Zwaag S (2007) Self healing materials: an alternative approach to 20 centuries of materials science. Springer, DordrechtCrossRef
2.
go back to reference Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211CrossRef Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211CrossRef
3.
go back to reference van der Zwaag S (2010) Routes and mechanisms towards self healing behaviour in engineering materials. Bull Polish Acad Sci 58:227–236 van der Zwaag S (2010) Routes and mechanisms towards self healing behaviour in engineering materials. Bull Polish Acad Sci 58:227–236
4.
go back to reference Gosh SK (2009) Self-healing materials: fundamentals, design strategies, and applications. In: Gosh SK (ed) Self-healing materials. Wiley-VCH, Weinheim, pp 1–28 Gosh SK (2009) Self-healing materials: fundamentals, design strategies, and applications. In: Gosh SK (ed) Self-healing materials. Wiley-VCH, Weinheim, pp 1–28
5.
go back to reference Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Self-healing materials. Adv Mater 22:5424–5430CrossRef Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Self-healing materials. Adv Mater 22:5424–5430CrossRef
6.
go back to reference Yuan YC, Yin T, Rong MZ, Zhang MQ (2008) Self healing in polymers and polymer composites. concept, realization and outlook: a review. Express Polym Lett 2:238–250CrossRef Yuan YC, Yin T, Rong MZ, Zhang MQ (2008) Self healing in polymers and polymer composites. concept, realization and outlook: a review. Express Polym Lett 2:238–250CrossRef
7.
go back to reference Grigoleit S (2010) Überblick über Selbstheilende Materialien. Technical report, Frauenhofer-Institut für Naturwissenschaftlich-Technische Trendanalysen (INT) Grigoleit S (2010) Überblick über Selbstheilende Materialien. Technical report, Frauenhofer-Institut für Naturwissenschaftlich-Technische Trendanalysen (INT)
8.
go back to reference White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797CrossRef White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797CrossRef
9.
go back to reference Beres W, Koul AK, Thamburaj R (1997) A tapered double-cantilever-beam specimen designed for constant-K testing at elevated temperatures. J Test Eval 25:536–542CrossRef Beres W, Koul AK, Thamburaj R (1997) A tapered double-cantilever-beam specimen designed for constant-K testing at elevated temperatures. J Test Eval 25:536–542CrossRef
10.
go back to reference Brown EN, Sottos NR, White SR (2002) Fracture testing of a self-healing polymer composite. Exp Mech 42:372–379CrossRef Brown EN, Sottos NR, White SR (2002) Fracture testing of a self-healing polymer composite. Exp Mech 42:372–379CrossRef
11.
go back to reference Brown EN (2011) Use of the tapered double-cantilever beam geometry for fracture toughness measurements and its applictaion to the quantification of self-healing. J Strain Anal Eng Des 46:167–186CrossRef Brown EN (2011) Use of the tapered double-cantilever beam geometry for fracture toughness measurements and its applictaion to the quantification of self-healing. J Strain Anal Eng Des 46:167–186CrossRef
12.
go back to reference Caruso MM, Blaiszik BJ, White SR, Sottos NR, Moore JS (2008) Full recovery of fracture toughness using a nontoxic solvent based self-healing systems. Adv Funct Mater 18:1898–1904CrossRef Caruso MM, Blaiszik BJ, White SR, Sottos NR, Moore JS (2008) Full recovery of fracture toughness using a nontoxic solvent based self-healing systems. Adv Funct Mater 18:1898–1904CrossRef
13.
go back to reference Guadagno L, Raimondo M, Naddeo C, Longo P, Mariconda A, Binder WH (2014) Healing efficiency and dynamic mechanical properties of self-healing epoxy systems. Smart Mater Struct 23:045001CrossRef Guadagno L, Raimondo M, Naddeo C, Longo P, Mariconda A, Binder WH (2014) Healing efficiency and dynamic mechanical properties of self-healing epoxy systems. Smart Mater Struct 23:045001CrossRef
14.
go back to reference Raimondo M, Guadagno L (2013) Healing efficiency of epoxy-based materials for structural applications. Polym Compos 34:1525–1532CrossRef Raimondo M, Guadagno L (2013) Healing efficiency of epoxy-based materials for structural applications. Polym Compos 34:1525–1532CrossRef
15.
go back to reference Barbero EJ, Ford KJ (2007) Characterization of self-healing fiber-reinforced polymer-matrix composite with distributed damage. J Adv Mater 39:20–27 Barbero EJ, Ford KJ (2007) Characterization of self-healing fiber-reinforced polymer-matrix composite with distributed damage. J Adv Mater 39:20–27
17.
go back to reference Schimmel EC, Remmers JJC (2006) Development of a constitutive model for self-healing materials. Technical report, Delft Aerospace Computational Science Schimmel EC, Remmers JJC (2006) Development of a constitutive model for self-healing materials. Technical report, Delft Aerospace Computational Science
18.
go back to reference Voyiadjis GZ, Shojaei A, Li G, Kattan PI (2012) A theory of anisotropic healing and damage mechanics of materials. Proc R Soc Lond A 468:163–183CrossRef Voyiadjis GZ, Shojaei A, Li G, Kattan PI (2012) A theory of anisotropic healing and damage mechanics of materials. Proc R Soc Lond A 468:163–183CrossRef
19.
go back to reference Voyiadjis GZ, Shojaei A, Li G (2011) A thermodynamic consistent damage and healing model for self healing materials. Int J Plast 27:1025–1044CrossRef Voyiadjis GZ, Shojaei A, Li G (2011) A thermodynamic consistent damage and healing model for self healing materials. Int J Plast 27:1025–1044CrossRef
20.
go back to reference Henson GM (2012) Continuum modeling of synthetic microvascular materials. In: Proceedings of the 53rd AIAA structures, dynamics and materials conference, Honolulu, Hawaii. doi: 10.2514/6.2012-2001 Henson GM (2012) Continuum modeling of synthetic microvascular materials. In: Proceedings of the 53rd AIAA structures, dynamics and materials conference, Honolulu, Hawaii. doi: 10.2514/6.2012-2001
21.
go back to reference Maiti S, Shankar C, Geubelle PH, Kieffer J (2006) Continuum and molecular-level modeling of fatigue crack retardation in self-healing polymers. J Eng Mater Technol 128:595–602CrossRef Maiti S, Shankar C, Geubelle PH, Kieffer J (2006) Continuum and molecular-level modeling of fatigue crack retardation in self-healing polymers. J Eng Mater Technol 128:595–602CrossRef
22.
go back to reference Sanada K, Itaya N, Shindo Y (2008) Self-healing of interfacial debonding in fiber-reinforced polymers and effect of microstructure on strength recovery. Open Mech Eng J 2:97–103CrossRef Sanada K, Itaya N, Shindo Y (2008) Self-healing of interfacial debonding in fiber-reinforced polymers and effect of microstructure on strength recovery. Open Mech Eng J 2:97–103CrossRef
23.
go back to reference Zemskov SV, Jonkers HM, Vermolen FJ (2011) Two analytical models for the probability characteristics of a crack hitting encapsulated particles: application to self-healing materials. Comput Mater Sci 50:3323–3333 Zemskov SV, Jonkers HM, Vermolen FJ (2011) Two analytical models for the probability characteristics of a crack hitting encapsulated particles: application to self-healing materials. Comput Mater Sci 50:3323–3333
24.
go back to reference Yagimli B, Lion A (2011) Experimental investigations and material modelling of curing processes under small deformations. Z Angew Math Mech 91:342–359CrossRef Yagimli B, Lion A (2011) Experimental investigations and material modelling of curing processes under small deformations. Z Angew Math Mech 91:342–359CrossRef
26.
go back to reference Bluhm J (2002) Modelling of saturated thermo-elastic porous solids with different phase temperatures. In: Ehlers W, Bluhm J (eds) Porous media. Springer, Berlin, pp 87–118CrossRef Bluhm J (2002) Modelling of saturated thermo-elastic porous solids with different phase temperatures. In: Ehlers W, Bluhm J (eds) Porous media. Springer, Berlin, pp 87–118CrossRef
27.
go back to reference de Boer R, Ehlers W (1986) Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme. Technical report, Universität - Gesamthochschule Essen de Boer R, Ehlers W (1986) Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme. Technical report, Universität - Gesamthochschule Essen
28.
go back to reference Ehlers W (1996) Grundlegende Konzepte in der Theorie Poröser Medien. Tech Mech 16:63–76 Ehlers W (1996) Grundlegende Konzepte in der Theorie Poröser Medien. Tech Mech 16:63–76
29.
go back to reference Ehlers W (2002) Foundations of multiphasic and porous materials. In: Ehlers W, Bluhm J (eds) Porous media. Springer, Berlin, pp 3–86CrossRef Ehlers W (2002) Foundations of multiphasic and porous materials. In: Ehlers W, Bluhm J (eds) Porous media. Springer, Berlin, pp 3–86CrossRef
30.
go back to reference Ehlers W (2012) Poröse Medien - ein kontinuummechanisches Modell auf der Basis der Mischungstheorie. Nachdruck der Habilitationsschrift aus dem Jahr 1989, Universität - Gesamthochschule Essen Ehlers W (2012) Poröse Medien - ein kontinuummechanisches Modell auf der Basis der Mischungstheorie. Nachdruck der Habilitationsschrift aus dem Jahr 1989, Universität - Gesamthochschule Essen
31.
go back to reference Acartürk AY (2009) Simulation of charged hydrated porous materials. PhD thesis, Universität Stuttgart Acartürk AY (2009) Simulation of charged hydrated porous materials. PhD thesis, Universität Stuttgart
32.
33.
go back to reference Bowen RM (1980) Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci 18:1129–1148CrossRef Bowen RM (1980) Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci 18:1129–1148CrossRef
34.
go back to reference Bowen RM (1982) Compressible porous media models by use of the theory of mixtures. Int J Eng Sci 20:697–735CrossRef Bowen RM (1982) Compressible porous media models by use of the theory of mixtures. Int J Eng Sci 20:697–735CrossRef
35.
go back to reference Kachanov LM (1958) Time of the rupture process under creep conditions. Izvestija Akademii Nauk Sojuza Sovetskich Socialisticeskich Republiki (SSSR) Otdelenie Techniceskich Nauk (Moskra) 8:26–31 Kachanov LM (1958) Time of the rupture process under creep conditions. Izvestija Akademii Nauk Sojuza Sovetskich Socialisticeskich Republiki (SSSR) Otdelenie Techniceskich Nauk (Moskra) 8:26–31
36.
go back to reference Ateshian GA, Ricken T (2010) Multigenerational interstitial growth of biological tissues. Biomech Model Mechanobiol 9:689–702CrossRef Ateshian GA, Ricken T (2010) Multigenerational interstitial growth of biological tissues. Biomech Model Mechanobiol 9:689–702CrossRef
37.
go back to reference Humphrey J, Rajagopal K (2002) A constrained mixture model for growth and remodelling of soft tissues. Math Models Methods Appl Sci 12:407–430CrossRef Humphrey J, Rajagopal K (2002) A constrained mixture model for growth and remodelling of soft tissues. Math Models Methods Appl Sci 12:407–430CrossRef
38.
go back to reference Rodriguez E, Hoger A, McCulloch A (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27:455–467CrossRef Rodriguez E, Hoger A, McCulloch A (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27:455–467CrossRef
40.
go back to reference Ehlers W (1989) On the thermodynamics of elasto-plastic porous media. Arch Mech 41:73–93 Ehlers W (1989) On the thermodynamics of elasto-plastic porous media. Arch Mech 41:73–93
41.
go back to reference Simo JC, Pister KS (1984) Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput Methods Appl Mech Eng 46:201–215CrossRef Simo JC, Pister KS (1984) Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput Methods Appl Mech Eng 46:201–215CrossRef
42.
go back to reference Miehe C (1988) Zur numerischen behandlung thermomechanischer Prozesse. PhD thesis, Universität Hannover Miehe C (1988) Zur numerischen behandlung thermomechanischer Prozesse. PhD thesis, Universität Hannover
43.
go back to reference Bluhm J, Ricken T, Bloßfeld M (2011) Ice formation in porous media. In: Markert B (ed) Advances in extended & multifield theories for continua, vol 59, Lecture notes in applied and computational mechanics. Springer, Berlin, pp 153–174CrossRef Bluhm J, Ricken T, Bloßfeld M (2011) Ice formation in porous media. In: Markert B (ed) Advances in extended & multifield theories for continua, vol 59, Lecture notes in applied and computational mechanics. Springer, Berlin, pp 153–174CrossRef
44.
go back to reference Michalowski RL, Zhu M (2006) Frost heave modelling using porosity rate function. Int J Numer Anal Methods Geomech 30:703–722CrossRef Michalowski RL, Zhu M (2006) Frost heave modelling using porosity rate function. Int J Numer Anal Methods Geomech 30:703–722CrossRef
45.
go back to reference Taylor RL (2008) FEAP – a finite element analysis program, Version 8.2. Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, CA Taylor RL (2008) FEAP – a finite element analysis program, Version 8.2. Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, CA
46.
go back to reference Blaiszik BJ, Sottos NR, White SR (2008) Nanocapsules for self healing materials. Compos Sci Technol 68:978–986CrossRef Blaiszik BJ, Sottos NR, White SR (2008) Nanocapsules for self healing materials. Compos Sci Technol 68:978–986CrossRef
47.
go back to reference Alzari V, Nuvoli D, Sanna D, Ruiu A, Mariani A (2015) Effect of limonene on the frontal ring opening metathesis polymerization of dicyclopentadiene. J Polym Sci A Polym Chem. doi:10.1002/pola.27776 Alzari V, Nuvoli D, Sanna D, Ruiu A, Mariani A (2015) Effect of limonene on the frontal ring opening metathesis polymerization of dicyclopentadiene. J Polym Sci A Polym Chem. doi:10.​1002/​pola.​27776
Metadata
Title
Continuum Mechanical Description of an Extrinsic and Autonomous Self-Healing Material Based on the Theory of Porous Media
Authors
Steffen Specht
Joachim Bluhm
Jörg Schröder
Copyright Year
2016
DOI
https://doi.org/10.1007/12_2015_338

Premium Partners