Skip to main content
Top

2017 | OriginalPaper | Chapter

Control and Synchronization of Fractional-Order Chaotic Systems

Authors : Ahmed G. Radwan, Wafaa S. Sayed, Salwa K. Abd-El-Hafiz

Published in: Fractional Order Control and Synchronization of Chaotic Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chaotic dynamics of fractional-order systems and their applications in secure communication have gained the attention of many recent researches. Fractional-order systems provide extra degrees of freedom and control capability with integer-order differential equations as special cases. Synchronization is a necessary function in any communication system and is rather hard to be achieved for chaotic signals that are ideally aperiodic. This chapter provides a general scheme of control, switching and generalized synchronization of fractional-order chaotic systems. Several systems are used as examples for demonstrating the required mathematical analysis and simulation results validating it. The non-standard finite difference method, which is suitable for fractional-order chaotic systems, is used to solve each system and get the responses. Effect of the fractional-order parameter on the responses of the systems extended to fractional-order domain is considered. A control and switching synchronization technique is proposed that uses switching parameters to decide the role of each system as a master or slave. A generalized scheme for synchronizing a fractional-order chaotic system with another one or with a linear combination of two other fractional-order chaotic systems is presented. Static (time-independent) and dynamic (time-dependent) synchronization, which could generate multiple scaled versions of the response, are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abd-El-Hafiz, S. K., Radwan, A. G., & AbdElHaleem, S. H. (2015). Encryption applications of a generalized chaotic map. Applied Mathematics & Information Sciences, 9(6), 1–19.MathSciNet Abd-El-Hafiz, S. K., Radwan, A. G., & AbdElHaleem, S. H. (2015). Encryption applications of a generalized chaotic map. Applied Mathematics & Information Sciences, 9(6), 1–19.MathSciNet
2.
go back to reference Abd-El-Hafiz, S. K., AbdElHaleem, S. H., & Radwan, A. G. (2016). Novel permutation measures for image encryption algorithms. Optics and Lasers in Engineering, 85, 72–83.CrossRef Abd-El-Hafiz, S. K., AbdElHaleem, S. H., & Radwan, A. G. (2016). Novel permutation measures for image encryption algorithms. Optics and Lasers in Engineering, 85, 72–83.CrossRef
3.
go back to reference Agrawal, S., Srivastava, M., & Das, S. (2012). Synchronization of fractional order chaotic systems using active control method. Chaos, Solitons & Fractals, 45(6), 737–752.CrossRef Agrawal, S., Srivastava, M., & Das, S. (2012). Synchronization of fractional order chaotic systems using active control method. Chaos, Solitons & Fractals, 45(6), 737–752.CrossRef
4.
go back to reference Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design. Springer. Azar, A. T., & Vaidyanathan, S. (2015). Chaos modeling and control systems design. Springer.
5.
go back to reference Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control (Vol. 337). Springer. Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control (Vol. 337). Springer.
6.
go back to reference Barakat, M. L., Mansingka, A. S., Radwan, A. G., & Salama, K. N. (2013). Generalized hardware post-processing technique for chaos-based pseudorandom number generators. ETRI Journal, 35(3), 448–458.CrossRef Barakat, M. L., Mansingka, A. S., Radwan, A. G., & Salama, K. N. (2013). Generalized hardware post-processing technique for chaos-based pseudorandom number generators. ETRI Journal, 35(3), 448–458.CrossRef
7.
go back to reference Bhalekar, S., & Daftardar-Gejji, V. (2010). Synchronization of different fractional order chaotic systems using active control. Communications in Nonlinear Science and Numerical Simulation, 15(11), 3536–3546.CrossRefMATH Bhalekar, S., & Daftardar-Gejji, V. (2010). Synchronization of different fractional order chaotic systems using active control. Communications in Nonlinear Science and Numerical Simulation, 15(11), 3536–3546.CrossRefMATH
8.
go back to reference Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016a). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. In Advances in chaos theory and intelligent control (pp. 681–697). Springer. Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016a). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. In Advances in chaos theory and intelligent control (pp. 681–697). Springer.
9.
go back to reference Boulkroune, A., Hamel, S., Azar, A. T., & Vaidyanathan, S. (2016b). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. In Advances in chaos theory and intelligent control (pp. 699–718). Springer. Boulkroune, A., Hamel, S., Azar, A. T., & Vaidyanathan, S. (2016b). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. In Advances in chaos theory and intelligent control (pp. 699–718). Springer.
10.
go back to reference Caponetto, R. (2010). Fractional order systems: Modeling and control applications (Vol. 72). World Scientific. Caponetto, R. (2010). Fractional order systems: Modeling and control applications (Vol. 72). World Scientific.
11.
go back to reference Chen, D., Zhang, R., Ma, X., & Liu, S. (2012). Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. Nonlinear Dynamics, 69(1–2), 35–55.MathSciNetCrossRefMATH Chen, D., Zhang, R., Ma, X., & Liu, S. (2012). Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. Nonlinear Dynamics, 69(1–2), 35–55.MathSciNetCrossRefMATH
12.
go back to reference Chen, D., Wu, C., Iu, H. H., & Ma, X. (2013). Circuit simulation for synchronization of a fractional-order and integer-order chaotic system. Nonlinear Dynamics, 73(3), 1671–1686.MathSciNetCrossRef Chen, D., Wu, C., Iu, H. H., & Ma, X. (2013). Circuit simulation for synchronization of a fractional-order and integer-order chaotic system. Nonlinear Dynamics, 73(3), 1671–1686.MathSciNetCrossRef
13.
go back to reference Chen, S., & Lü, J. (2002). Synchronization of an uncertain unified chaotic system via adaptive control. Chaos, Solitons & Fractals, 14(4), 643–647.CrossRefMATH Chen, S., & Lü, J. (2002). Synchronization of an uncertain unified chaotic system via adaptive control. Chaos, Solitons & Fractals, 14(4), 643–647.CrossRefMATH
14.
go back to reference Chien, T. I., & Liao, T. L. (2005). Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization. Chaos, Solitons & Fractals, 24(1), 241–255.CrossRefMATH Chien, T. I., & Liao, T. L. (2005). Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization. Chaos, Solitons & Fractals, 24(1), 241–255.CrossRefMATH
15.
go back to reference Faieghi, M. R., & Delavari, H. (2012). Chaos in fractional-order Genesio-Tesi system and its synchronization. Communications in Nonlinear Science and Numerical Simulation, 17(2), 731–741.MathSciNetCrossRefMATH Faieghi, M. R., & Delavari, H. (2012). Chaos in fractional-order Genesio-Tesi system and its synchronization. Communications in Nonlinear Science and Numerical Simulation, 17(2), 731–741.MathSciNetCrossRefMATH
16.
go back to reference Frey, D. R. (1993). Chaotic digital encoding: An approach to secure communication. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 40(10), 660–666.CrossRef Frey, D. R. (1993). Chaotic digital encoding: An approach to secure communication. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 40(10), 660–666.CrossRef
17.
go back to reference Gorenflo, R., & Mainardi, F. (1997). Fractional calculus. Springer. Gorenflo, R., & Mainardi, F. (1997). Fractional calculus. Springer.
18.
go back to reference Han, S. K., Kurrer, C., & Kuramoto, Y. (1995). Dephasing and bursting in coupled neural oscillators. Physical Review Letters, 75(17), 3190.CrossRef Han, S. K., Kurrer, C., & Kuramoto, Y. (1995). Dephasing and bursting in coupled neural oscillators. Physical Review Letters, 75(17), 3190.CrossRef
19.
go back to reference Henein, M. M. R., Sayed, W. S., Radwan, A. G., & Abd-El-Hafiez, S. K. (2016). Switched active control synchronization of three fractional order chaotic systems. In 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Henein, M. M. R., Sayed, W. S., Radwan, A. G., & Abd-El-Hafiez, S. K. (2016). Switched active control synchronization of three fractional order chaotic systems. In 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology.
20.
go back to reference Hirsch, M. W., Smale, S., & Devaney, R. L. (2012). Differential equations, dynamical systems, and an introduction to chaos. Academic Press. Hirsch, M. W., Smale, S., & Devaney, R. L. (2012). Differential equations, dynamical systems, and an introduction to chaos. Academic Press.
21.
go back to reference Ho, M., Hung, Y., & Chou, C. (2002). Phase and anti-phase synchronization of two chaotic systems by using active control. Physics Letters A, 296(1), 43–48.CrossRefMATH Ho, M., Hung, Y., & Chou, C. (2002). Phase and anti-phase synchronization of two chaotic systems by using active control. Physics Letters A, 296(1), 43–48.CrossRefMATH
22.
go back to reference Mc, Ho, & Hung, Y. C. (2002). Synchronization of two different systems by using generalized active control. Physics Letters A, 301(5), 424–428.MathSciNetMATH Mc, Ho, & Hung, Y. C. (2002). Synchronization of two different systems by using generalized active control. Physics Letters A, 301(5), 424–428.MathSciNetMATH
23.
go back to reference Hosseinnia, S., Ghaderi, R., Mahmoudian, M., Momani, S., et al. (2010). Sliding mode synchronization of an uncertain fractional order chaotic system. Computers & Mathematics with Applications, 59(5), 1637–1643.MathSciNetCrossRefMATH Hosseinnia, S., Ghaderi, R., Mahmoudian, M., Momani, S., et al. (2010). Sliding mode synchronization of an uncertain fractional order chaotic system. Computers & Mathematics with Applications, 59(5), 1637–1643.MathSciNetCrossRefMATH
24.
go back to reference Hussian, G., Alnaser, M., & Momani, S. (2008). Non-standard discretization of fractional differential equations. In: Proceeding of 8th Seminar of Differential Equations and Dynamical Systems in, Isfahan, Iran. Hussian, G., Alnaser, M., & Momani, S. (2008). Non-standard discretization of fractional differential equations. In: Proceeding of 8th Seminar of Differential Equations and Dynamical Systems in, Isfahan, Iran.
25.
go back to reference Jafari, S., Sprott, J. C., & Golpayegani, S. M. R. H. (2013). Elementary quadratic chaotic flows with no equilibria. Physics Letters A, 377(9), 699–702.MathSciNetCrossRef Jafari, S., Sprott, J. C., & Golpayegani, S. M. R. H. (2013). Elementary quadratic chaotic flows with no equilibria. Physics Letters A, 377(9), 699–702.MathSciNetCrossRef
26.
go back to reference Kocarev, L., & Lian, S. (2011). Chaos-based cryptography: Theory, algorithms and applications (vol. 354). Springer. Kocarev, L., & Lian, S. (2011). Chaos-based cryptography: Theory, algorithms and applications (vol. 354). Springer.
27.
go back to reference Lau, F., & Tse, C. K. (2003). Chaos-based digital communication systems. Springer. Lau, F., & Tse, C. K. (2003). Chaos-based digital communication systems. Springer.
28.
go back to reference Li, C., & Yan, J. (2007). The synchronization of three fractional differential systems. Chaos, Solitons & Fractals, 32(2), 751–757.CrossRef Li, C., & Yan, J. (2007). The synchronization of three fractional differential systems. Chaos, Solitons & Fractals, 32(2), 751–757.CrossRef
29.
go back to reference Liu, J., Ye, C., Zhang, S., & Song, W. (2000). Anti-phase synchronization in coupled map lattices. Physics Letters A, 274(1), 27–29. Liu, J., Ye, C., Zhang, S., & Song, W. (2000). Anti-phase synchronization in coupled map lattices. Physics Letters A, 274(1), 27–29.
30.
go back to reference Magin, R. L. (2006). Fractional calculus in bioengineering. Begell House Redding. Magin, R. L. (2006). Fractional calculus in bioengineering. Begell House Redding.
31.
go back to reference Mickens, R. E. (2000). Applications of nonstandard finite difference schemes. World Scientific. Mickens, R. E. (2000). Applications of nonstandard finite difference schemes. World Scientific.
32.
go back to reference Mickens, R. E. (2005). Advances in the applications of nonstandard finite difference schemes. World Scientific. Mickens, R. E. (2005). Advances in the applications of nonstandard finite difference schemes. World Scientific.
33.
go back to reference Moaddy, K., Radwan, A. G., Salama, K. N., Momani, S., & Hashim, I. (2012). The fractional-order modeling and synchronization of electrically coupled neuron systems. Computers & Mathematics with Applications, 64(10), 3329–3339.MathSciNetCrossRefMATH Moaddy, K., Radwan, A. G., Salama, K. N., Momani, S., & Hashim, I. (2012). The fractional-order modeling and synchronization of electrically coupled neuron systems. Computers & Mathematics with Applications, 64(10), 3329–3339.MathSciNetCrossRefMATH
34.
go back to reference Odibat, Z. M., Corson, N., Aziz-Alaoui, M., & Bertelle, C. (2010). Synchronization of chaotic fractional-order systems via linear control. International Journal of Bifurcation and Chaos, 20(01), 81–97.MathSciNetCrossRefMATH Odibat, Z. M., Corson, N., Aziz-Alaoui, M., & Bertelle, C. (2010). Synchronization of chaotic fractional-order systems via linear control. International Journal of Bifurcation and Chaos, 20(01), 81–97.MathSciNetCrossRefMATH
35.
go back to reference Ouannas, A., Azar, A. T., & Abu-Saris, R. (2016a). A new type of hybrid synchronization between arbitrary hyperchaotic maps. International Journal of Machine Learning and Cybernetics, 1–8. Ouannas, A., Azar, A. T., & Abu-Saris, R. (2016a). A new type of hybrid synchronization between arbitrary hyperchaotic maps. International Journal of Machine Learning and Cybernetics, 1–8.
36.
go back to reference Ouannas, A., Azar, A. T., & Vaidyanathan, S. (2016b). A robust method for new fractional hybrid chaos synchronization. Mathematical Methods in the Applied Sciences. Ouannas, A., Azar, A. T., & Vaidyanathan, S. (2016b). A robust method for new fractional hybrid chaos synchronization. Mathematical Methods in the Applied Sciences.
37.
go back to reference Park, J., & Kwon, O. (2005). A novel criterion for delayed feedback control of time-delay chaotic systems. Chaos, Solitons & Fractals, 23(2), 495–501.MathSciNetCrossRefMATH Park, J., & Kwon, O. (2005). A novel criterion for delayed feedback control of time-delay chaotic systems. Chaos, Solitons & Fractals, 23(2), 495–501.MathSciNetCrossRefMATH
39.
go back to reference Petras, I. (2011). Fractional-order nonlinear systems: Modeling, analysis and simulation. Springer Science & Business Media. Petras, I. (2011). Fractional-order nonlinear systems: Modeling, analysis and simulation. Springer Science & Business Media.
40.
go back to reference Radwan, A. (2012). Stability analysis of the fractional-order RL\(_{\beta }\)C\(_{\alpha }\) circuit. Journal of Fractional Calculus and Applications, 3(1), 1–15. Radwan, A. (2012). Stability analysis of the fractional-order RL\(_{\beta }\)C\(_{\alpha }\) circuit. Journal of Fractional Calculus and Applications, 3(1), 1–15.
41.
go back to reference Radwan, A., Soliman, A., & El-Sedeek, A. (2004). MOS realization of the modified Lorenz chaotic system. Chaos, Solitons & Fractals, 21(3), 553–561.CrossRefMATH Radwan, A., Soliman, A., & El-Sedeek, A. (2004). MOS realization of the modified Lorenz chaotic system. Chaos, Solitons & Fractals, 21(3), 553–561.CrossRefMATH
42.
go back to reference Radwan, A., Soliman, A. M., & Elwakil, A. S. (2007). 1-D digitally-controlled multiscroll chaos generator. International Journal of Bifurcation and Chaos, 17(01), 227–242.CrossRefMATH Radwan, A., Soliman, A. M., & Elwakil, A. S. (2007). 1-D digitally-controlled multiscroll chaos generator. International Journal of Bifurcation and Chaos, 17(01), 227–242.CrossRefMATH
43.
go back to reference Radwan, A., Moaddy, K., & Hashim, I. (2013). Amplitude modulation and synchronization of fractional-order memristor-based Chua’s circuit. In Abstract and applied analysis (Vol. 2013). Hindawi Publishing Corporation. Radwan, A., Moaddy, K., & Hashim, I. (2013). Amplitude modulation and synchronization of fractional-order memristor-based Chua’s circuit. In Abstract and applied analysis (Vol. 2013). Hindawi Publishing Corporation.
44.
go back to reference Radwan, A., Moaddy, K., Salama, K. N., Momani, S., & Hashim, I. (2014a). Control and switching synchronization of fractional order chaotic systems using active control technique. Journal of advanced research, 5(1), 125–132.CrossRefMATH Radwan, A., Moaddy, K., Salama, K. N., Momani, S., & Hashim, I. (2014a). Control and switching synchronization of fractional order chaotic systems using active control technique. Journal of advanced research, 5(1), 125–132.CrossRefMATH
45.
go back to reference Radwan, A. G. (2013a). On some generalized discrete logistic maps. Journal of advanced research, 4(2), 163–171.CrossRef Radwan, A. G. (2013a). On some generalized discrete logistic maps. Journal of advanced research, 4(2), 163–171.CrossRef
46.
go back to reference Radwan, A. G. (2013b). Resonance and quality factor of the fractional circuit. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(3), 377–385.CrossRef Radwan, A. G. (2013b). Resonance and quality factor of the fractional circuit. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(3), 377–385.CrossRef
47.
go back to reference Radwan, A. G., & Abd-El-Hafiz, S. K. (2013). Image encryption using generalized tent map. In IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS) (pp. 653–656). IEEE. Radwan, A. G., & Abd-El-Hafiz, S. K. (2013). Image encryption using generalized tent map. In IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS) (pp. 653–656). IEEE.
48.
go back to reference Radwan, A. G., & Abd-El-Hafiz, S. K. (2014). The effect of multi-scrolls distribution on image encryption. In 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2014 (pp. 435–438). IEEE. Radwan, A. G., & Abd-El-Hafiz, S. K. (2014). The effect of multi-scrolls distribution on image encryption. In 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2014 (pp. 435–438). IEEE.
49.
go back to reference Radwan, A. G., & Fouda, M. E. (2013). Optimization of fractional-order RLC filters. Circuits, Systems, and Signal Processing, 32(5), 2097–2118.MathSciNetCrossRef Radwan, A. G., & Fouda, M. E. (2013). Optimization of fractional-order RLC filters. Circuits, Systems, and Signal Processing, 32(5), 2097–2118.MathSciNetCrossRef
50.
go back to reference Radwan, A. G., Soliman, A. M., & El-Sedeek, A. L. (2003). An inductorless CMOS realization of Chua’s circuit. Chaos, Solitons & Fractals, 18(1), 149–158.CrossRef Radwan, A. G., Soliman, A. M., & El-Sedeek, A. L. (2003). An inductorless CMOS realization of Chua’s circuit. Chaos, Solitons & Fractals, 18(1), 149–158.CrossRef
51.
go back to reference Radwan, A. G., Elwakil, A. S., & Soliman, A. M. (2008a). Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(7), 2051–2063.MathSciNetCrossRefMATH Radwan, A. G., Elwakil, A. S., & Soliman, A. M. (2008a). Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(7), 2051–2063.MathSciNetCrossRefMATH
52.
go back to reference Radwan, A. G., Soliman, A. M., & Elwakil, A. S. (2008b). First-order filters generalized to the fractional domain. Journal of Circuits, Systems, and Computers, 17(01), 55–66.CrossRef Radwan, A. G., Soliman, A. M., & Elwakil, A. S. (2008b). First-order filters generalized to the fractional domain. Journal of Circuits, Systems, and Computers, 17(01), 55–66.CrossRef
53.
go back to reference Radwan, A. G., Moaddy, K., & Momani, S. (2011a). Stability and non-standard finite difference method of the generalized Chua’s circuit. Computers & Mathematics with Applications, 62(3), 961–970.MathSciNetCrossRefMATH Radwan, A. G., Moaddy, K., & Momani, S. (2011a). Stability and non-standard finite difference method of the generalized Chua’s circuit. Computers & Mathematics with Applications, 62(3), 961–970.MathSciNetCrossRefMATH
54.
go back to reference Radwan, A. G., Shamim, A., & Salama, K. N. (2011b). Theory of fractional order elements based impedance matching networks. IEEE Microwave and Wireless Components Letters, 21(3), 120–122.CrossRef Radwan, A. G., Shamim, A., & Salama, K. N. (2011b). Theory of fractional order elements based impedance matching networks. IEEE Microwave and Wireless Components Letters, 21(3), 120–122.CrossRef
55.
go back to reference Radwan, A. G., Abd-El-Hafiz, S. K., & AbdElHaleem, S. H. (2012). Image encryption in the fractional-order domain. In International Conference on Engineering and Technology (ICET), 2012 (pp. 1–6). IEEE. Radwan, A. G., Abd-El-Hafiz, S. K., & AbdElHaleem, S. H. (2012). Image encryption in the fractional-order domain. In International Conference on Engineering and Technology (ICET), 2012 (pp. 1–6). IEEE.
56.
go back to reference Radwan, A. G., Abd-El-Hafiz, S. K., & AbdElHaleem, S. H. (2014b). An image encryption system based on generalized discrete maps. In 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS) (pp. 283–286). IEEE. Radwan, A. G., Abd-El-Hafiz, S. K., & AbdElHaleem, S. H. (2014b). An image encryption system based on generalized discrete maps. In 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS) (pp. 283–286). IEEE.
57.
go back to reference Radwan, A. G., Abd-El-Hafiz, S. K., & AbdElHaleem, S. H. (2015a). Image encryption based on fractional-order chaotic generators. In 2015 International Symposium on Nonlinear Theory and its Applications NOLTA2015, Kowloon, Hong Kong, China, 1–4 December 2015 (pp. 688–691). IEEE. Radwan, A. G., Abd-El-Hafiz, S. K., & AbdElHaleem, S. H. (2015a). Image encryption based on fractional-order chaotic generators. In 2015 International Symposium on Nonlinear Theory and its Applications NOLTA2015, Kowloon, Hong Kong, China, 1–4 December 2015 (pp. 688–691). IEEE.
58.
go back to reference Radwan, A. G., AbdElHaleem, S. H., & Abd-El-Hafiz, S. K. (2015b). Symmetric encryption algorithms using chaotic and non-chaotic generators: A review. Journal of Advanced Research. Radwan, A. G., AbdElHaleem, S. H., & Abd-El-Hafiz, S. K. (2015b). Symmetric encryption algorithms using chaotic and non-chaotic generators: A review. Journal of Advanced Research.
59.
go back to reference Sayed, W. S., Radwan, A. G., & Fahmy, H. A. (2015a). Design of a generalized bidirectional tent map suitable for encryption applications. In 2015 11th International Computer Engineering Conference (ICENCO) (pp. 207–211). IEEE. Sayed, W. S., Radwan, A. G., & Fahmy, H. A. (2015a). Design of a generalized bidirectional tent map suitable for encryption applications. In 2015 11th International Computer Engineering Conference (ICENCO) (pp. 207–211). IEEE.
60.
go back to reference Sayed, W. S., Radwan, A. G., & Fahmy, H. A. H. (2015b). Design of positive, negative, and alternating sign generalized logistic maps. Discrete Dynamics in Nature and Society, 2015, Article ID 586783, 2015. Sayed, W. S., Radwan, A. G., & Fahmy, H. A. H. (2015b). Design of positive, negative, and alternating sign generalized logistic maps. Discrete Dynamics in Nature and Society, 2015, Article ID 586783, 2015.
61.
go back to reference Sayed, W. S., Radwan, A. G., & Abd-El-Hafiez, S. K. (2016). Generalized synchronization involving a linear combination of fractional-order chaotic systems. In 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Sayed, W. S., Radwan, A. G., & Abd-El-Hafiez, S. K. (2016). Generalized synchronization involving a linear combination of fractional-order chaotic systems. In 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology.
62.
go back to reference Schöll, E. (2001). Nonlinear spatio-temporal dynamics and chaos in semiconductors (Vol. 10). Cambridge University Press. Schöll, E. (2001). Nonlinear spatio-temporal dynamics and chaos in semiconductors (Vol. 10). Cambridge University Press.
63.
go back to reference Shamim, A., Radwan, A. G., & Salama, K. N. (2011). Fractional Smith chart theory. IEEE Microwave and Wireless Components Letters, 21(3), 117–119.CrossRef Shamim, A., Radwan, A. G., & Salama, K. N. (2011). Fractional Smith chart theory. IEEE Microwave and Wireless Components Letters, 21(3), 117–119.CrossRef
64.
go back to reference Soltan, A., Radwan, A. G., & Soliman, A. M. (2012). Fractional order filter with two fractional elements of dependant orders. Microelectronics Journal, 43(11), 818–827.CrossRef Soltan, A., Radwan, A. G., & Soliman, A. M. (2012). Fractional order filter with two fractional elements of dependant orders. Microelectronics Journal, 43(11), 818–827.CrossRef
65.
go back to reference Sprott, J. C. (2000). A new class of chaotic circuit. Physics Letters A, 266(1), 19–23.CrossRef Sprott, J. C. (2000). A new class of chaotic circuit. Physics Letters A, 266(1), 19–23.CrossRef
66.
go back to reference Srivastava, M., Ansari, S., Agrawal, S., Das, S., & Leung, A. (2014). Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method. Nonlinear Dynamics, 76(2), 905–914.MathSciNetCrossRef Srivastava, M., Ansari, S., Agrawal, S., Das, S., & Leung, A. (2014). Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method. Nonlinear Dynamics, 76(2), 905–914.MathSciNetCrossRef
67.
go back to reference Strogatz, S. H. (2014). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Westview Press. Strogatz, S. H. (2014). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Westview Press.
68.
go back to reference Vaidyanathan, S., & Azar, A. T. (2016a). Adaptive backstepping control and synchronization of a novel 3-D jerk system with an exponential nonlinearity. In Advances in chaos theory and intelligent control (pp. 249–274). Springer. Vaidyanathan, S., & Azar, A. T. (2016a). Adaptive backstepping control and synchronization of a novel 3-D jerk system with an exponential nonlinearity. In Advances in chaos theory and intelligent control (pp. 249–274). Springer.
69.
go back to reference Vaidyanathan S, & Azar AT (2016b) Adaptive control and synchronization of Halvorsen circulant chaotic systems. In Advances in chaos theory and intelligent control (pp. 225–247). Springer. Vaidyanathan S, & Azar AT (2016b) Adaptive control and synchronization of Halvorsen circulant chaotic systems. In Advances in chaos theory and intelligent control (pp. 225–247). Springer.
70.
go back to reference Vaidyanathan, S., & Azar, A. T. (2016c). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities. In Advances in chaos theory and intelligent control (pp. 155–178). Springer. Vaidyanathan, S., & Azar, A. T. (2016c). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities. In Advances in chaos theory and intelligent control (pp. 155–178). Springer.
71.
go back to reference Vaidyanathan, S., & Azar, A. T. (2016d). Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. In Advances in chaos theory and intelligent control (pp. 275–296). Springer. Vaidyanathan, S., & Azar, A. T. (2016d). Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. In Advances in chaos theory and intelligent control (pp. 275–296). Springer.
72.
go back to reference Vaidyanathan, S., & Azar, A. T. (2016e). A novel 4-D four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. In Advances in chaos theory and intelligent control (pp. 203–224). Springer. Vaidyanathan, S., & Azar, A. T. (2016e). A novel 4-D four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. In Advances in chaos theory and intelligent control (pp. 203–224). Springer.
73.
go back to reference Vaidyanathan, S., & Azar, A. T. (2016f). Qualitative study and adaptive control of a novel 4-D hyperchaotic system with three quadratic nonlinearities. In Advances in chaos theory and intelligent control (pp. 179–202). Springer. Vaidyanathan, S., & Azar, A. T. (2016f). Qualitative study and adaptive control of a novel 4-D hyperchaotic system with three quadratic nonlinearities. In Advances in chaos theory and intelligent control (pp. 179–202). Springer.
74.
go back to reference Vincent, U. (2008). Chaos synchronization using active control and backstepping control: A comparative analysis. Nonlinear Analysis, 13(2), 253–261.MathSciNetMATH Vincent, U. (2008). Chaos synchronization using active control and backstepping control: A comparative analysis. Nonlinear Analysis, 13(2), 253–261.MathSciNetMATH
75.
go back to reference Wedekind, I., & Parlitz, U. (2001). Experimental observation of synchronization and anti-synchronization of chaotic low-frequency-fluctuations in external cavity semiconductor lasers. International Journal of Bifurcation and Chaos, 11(04), 1141–1147.CrossRef Wedekind, I., & Parlitz, U. (2001). Experimental observation of synchronization and anti-synchronization of chaotic low-frequency-fluctuations in external cavity semiconductor lasers. International Journal of Bifurcation and Chaos, 11(04), 1141–1147.CrossRef
76.
go back to reference Wu, X., Wang, H., & Lu, H. (2012). Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication. Nonlinear Analysis: Real World Applications, 13(3), 1441–1450.MathSciNetCrossRefMATH Wu, X., Wang, H., & Lu, H. (2012). Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication. Nonlinear Analysis: Real World Applications, 13(3), 1441–1450.MathSciNetCrossRefMATH
77.
go back to reference Yassen, M. T. (2005). Chaos synchronization between two different chaotic systems using active control. Chaos, Solitons & Fractals, 23(1), 131–140.MathSciNetCrossRefMATH Yassen, M. T. (2005). Chaos synchronization between two different chaotic systems using active control. Chaos, Solitons & Fractals, 23(1), 131–140.MathSciNetCrossRefMATH
78.
go back to reference Yu, Y., & Li, H. X. (2008). The synchronization of fractional-order Rössler hyperchaotic systems. Physica A: Statistical Mechanics and its Applications, 387(5), 1393–1403.MathSciNetCrossRef Yu, Y., & Li, H. X. (2008). The synchronization of fractional-order Rössler hyperchaotic systems. Physica A: Statistical Mechanics and its Applications, 387(5), 1393–1403.MathSciNetCrossRef
79.
go back to reference Yuan, L. G., & Yang, Q. G. (2012). Parameter identification and synchronization of fractional-order chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 17(1), 305–316.MathSciNetCrossRefMATH Yuan, L. G., & Yang, Q. G. (2012). Parameter identification and synchronization of fractional-order chaotic systems. Communications in Nonlinear Science and Numerical Simulation, 17(1), 305–316.MathSciNetCrossRefMATH
80.
go back to reference Zidan, M. A., Radwan, A. G., & Salama, K. N. (2012). Controllable V-shape multiscroll butterfly attractor: System and circuit implementation. International Journal of Bifurcation and Chaos, 22(06), 1250,143. Zidan, M. A., Radwan, A. G., & Salama, K. N. (2012). Controllable V-shape multiscroll butterfly attractor: System and circuit implementation. International Journal of Bifurcation and Chaos, 22(06), 1250,143.
Metadata
Title
Control and Synchronization of Fractional-Order Chaotic Systems
Authors
Ahmed G. Radwan
Wafaa S. Sayed
Salwa K. Abd-El-Hafiz
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-50249-6_11

Premium Partner