Skip to main content
Top
Published in: Wireless Networks 5/2010

01-07-2010

Control of wireless networks with flow level dynamics under constant time scheduling

Authors: Long Bao Le, Ravi R. Mazumdar

Published in: Wireless Networks | Issue 5/2010

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider a network control problem for wireless networks with flow level dynamics under the general k-hop interference model. In particular, we investigate the control problem in low load and high load regimes. In the low load regime, we show that the network can be stabilized by a regulated maximal scheduling policy considering flow level dynamics if the offered load satisfies a constraining bound condition. Because maximal scheduling is a general scheduling rule whose implementation is not specified, we propose a constant-time and distributed scheduling algorithm for a general k-hop interference model which can approximate the maximal scheduling policy within an arbitrarily small error. Under the stability condition, we show how to calculate transmission rates for different user classes such that the long-term (time average) network utility is maximized. This long-term network utility captures the real network performance due to the fact that under flow level dynamics, the number of users randomly change so instantaneous network utility maximization does not result in useful network performance. Our results imply that congestion control is unnecessary when the offered load is low and optimal user rates can be determined to maximize users’ long-term satisfaction. In the high load regime where the network can be unstable under the regulated maximal scheduling policy, we propose a cross-layer congestion control and scheduling algorithm which can stabilize the network under arbitrary network load. Through extensive numerical analysis for some typical networks, we show that the proposed scheduling algorithm has much lower overhead than other existing queue-length-based constant-time scheduling schemes in the literature, and it achieves performance much better than the guaranteed bound.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Mo, J., & Walrand, J. (2000). Fair end-to-end window-based congestion control. IEEE/ACM Transactions on Networking, 8(5), 556–567.CrossRef Mo, J., & Walrand, J. (2000). Fair end-to-end window-based congestion control. IEEE/ACM Transactions on Networking, 8(5), 556–567.CrossRef
2.
go back to reference Kelly, F. P., Maulloo, A., & Tan, D. (1998). Rate control in communication networks: Shadow prices, proportional fairness and stability. Journal of the Operation Research Society, 49, 237–252.MATH Kelly, F. P., Maulloo, A., & Tan, D. (1998). Rate control in communication networks: Shadow prices, proportional fairness and stability. Journal of the Operation Research Society, 49, 237–252.MATH
3.
go back to reference Low, S. H., & Lapsley, D. E. (1999). Optimal flow control, I: Basic algorithm and convergence. IEEE/ACM Transactions on Networking, 861–875. Low, S. H., & Lapsley, D. E. (1999). Optimal flow control, I: Basic algorithm and convergence. IEEE/ACM Transactions on Networking, 861–875.
4.
go back to reference Yaiche, H., Mazumdar, R., & Rosenberg, C. (2000). A game theoretic framework for bandwidth allocation and pricing in broadband networks. IEEE/ACM Transactions on Networking, 8(5), 667–678.CrossRef Yaiche, H., Mazumdar, R., & Rosenberg, C. (2000). A game theoretic framework for bandwidth allocation and pricing in broadband networks. IEEE/ACM Transactions on Networking, 8(5), 667–678.CrossRef
5.
go back to reference Lin, X., & Shroff, N. B. (2006). The impact of imperfect scheduling on cross-layer congestion control in wireless networks. IEEE/ACM Transactions on Networking, 14(2), 302–315.CrossRef Lin, X., & Shroff, N. B. (2006). The impact of imperfect scheduling on cross-layer congestion control in wireless networks. IEEE/ACM Transactions on Networking, 14(2), 302–315.CrossRef
6.
go back to reference Neely, M., Modiano, E., & Li, C. (2005). Fairness and optimal stochastic control for heterogeneous networks. IEEE INFOCOM. Neely, M., Modiano, E., & Li, C. (2005). Fairness and optimal stochastic control for heterogeneous networks. IEEE INFOCOM.
7.
go back to reference Hajek, B., & Sasaki, G. (1988). Link scheduling in polynomial time. IEEE Transactions on Information Theory, 34, 910–917.CrossRefMathSciNet Hajek, B., & Sasaki, G. (1988). Link scheduling in polynomial time. IEEE Transactions on Information Theory, 34, 910–917.CrossRefMathSciNet
8.
go back to reference Bui, L., Eryilmaz, A., Srikant, R., & Wu, X. (2006). Joint asynchronous congestion control and distributed scheduling for multi-hop wireless networks. IEEE INFOCOM. Bui, L., Eryilmaz, A., Srikant, R., & Wu, X. (2006). Joint asynchronous congestion control and distributed scheduling for multi-hop wireless networks. IEEE INFOCOM.
9.
go back to reference Sharma, G., Mazumdar, R., & Shroff, N. (2006). On the complexity of scheduling in multihop wireless systems. IEEE MOBICOM. Sharma, G., Mazumdar, R., & Shroff, N. (2006). On the complexity of scheduling in multihop wireless systems. IEEE MOBICOM.
10.
go back to reference Tassiulas, L., & Ephremides, A. (1992). Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions on Automatic Control, 37(12), 1936–1948.MATHCrossRefMathSciNet Tassiulas, L., & Ephremides, A. (1992). Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions on Automatic Control, 37(12), 1936–1948.MATHCrossRefMathSciNet
11.
go back to reference Tassiulas, L. (1998). Linear complexity algorithms for maximum throughput in radio networks and input queued switches. IEEE INFOCOM. Tassiulas, L. (1998). Linear complexity algorithms for maximum throughput in radio networks and input queued switches. IEEE INFOCOM.
12.
go back to reference Modiano, E., Shah, D., & Zussman, G. (2006). Maximizing throughput in wireless networks via gossiping. ACM SIGMETRICS. Modiano, E., Shah, D., & Zussman, G. (2006). Maximizing throughput in wireless networks via gossiping. ACM SIGMETRICS.
13.
go back to reference Eryilmaz, A., Ozdaglar, A., & Modiano, E. (2007). Polynomial complexity algorithms for full utilization of multi-hop wireless networks. IEEE INFOCOM. Eryilmaz, A., Ozdaglar, A., & Modiano, E. (2007). Polynomial complexity algorithms for full utilization of multi-hop wireless networks. IEEE INFOCOM.
14.
go back to reference Sanghavi, S., Bui, L., & Srikant, R. (2007). Distributed link scheduling with constant overhead. ACM SIGMETRICS. Sanghavi, S., Bui, L., & Srikant, R. (2007). Distributed link scheduling with constant overhead. ACM SIGMETRICS.
15.
go back to reference Lin, X., & Rasool, S. (2006). Constant-time distributed scheduling policies for ad hoc wireless networks. IEEE Conference on Decision and Control. Lin, X., & Rasool, S. (2006). Constant-time distributed scheduling policies for ad hoc wireless networks. IEEE Conference on Decision and Control.
16.
go back to reference Joo, C., & Shroff, N. B. (2007). Performance of random access scheduling schemes in multi-hop wireless networks. IEEE INFOCOM. Joo, C., & Shroff, N. B. (2007). Performance of random access scheduling schemes in multi-hop wireless networks. IEEE INFOCOM.
17.
go back to reference Gupta, A., Lin, X., & Srikant, R. (2007). Low-complexity distributed scheduling algorithms for wireless networks. IEEE INFOCOM. Gupta, A., Lin, X., & Srikant, R. (2007). Low-complexity distributed scheduling algorithms for wireless networks. IEEE INFOCOM.
18.
go back to reference Wu, X., Srikant, R., & Perkins, J. R. (2007). Scheduling efficiency of distributed greedy scheduling algorithms in wireless networks. IEEE Transactions on Mobile Computing, 6(6), 595–605.CrossRef Wu, X., Srikant, R., & Perkins, J. R. (2007). Scheduling efficiency of distributed greedy scheduling algorithms in wireless networks. IEEE Transactions on Mobile Computing, 6(6), 595–605.CrossRef
19.
go back to reference Chaporkar, P., Kar, K., & Sarkar, S. (2005). Throughput guarantees through maximal scheduling in wireless networks. Allerton Conference on Communication, Control and Computing. Chaporkar, P., Kar, K., & Sarkar, S. (2005). Throughput guarantees through maximal scheduling in wireless networks. Allerton Conference on Communication, Control and Computing.
20.
go back to reference Kumar, P. R., & Seidman, T. I. (1990). Dynamic instabilities and stabilization methods in distributed real-time scheduling of manufacturing systems. IEEE Transactions on Automatic Control, 35(3), 289–298.MATHCrossRefMathSciNet Kumar, P. R., & Seidman, T. I. (1990). Dynamic instabilities and stabilization methods in distributed real-time scheduling of manufacturing systems. IEEE Transactions on Automatic Control, 35(3), 289–298.MATHCrossRefMathSciNet
21.
go back to reference Tassiulas, L. (1995). Adaptive back-pressure congestion control based on local information. IEEE Transactions on Automatic Control, 40(2), 236–250.MATHCrossRefMathSciNet Tassiulas, L. (1995). Adaptive back-pressure congestion control based on local information. IEEE Transactions on Automatic Control, 40(2), 236–250.MATHCrossRefMathSciNet
22.
go back to reference Humes, C., Jr. (1994). A regulator stabilization technique: Kumar–Seidman revisited. IEEE Transactions on Automatic Control, 39(1), 191–196.MATHCrossRefMathSciNet Humes, C., Jr. (1994). A regulator stabilization technique: Kumar–Seidman revisited. IEEE Transactions on Automatic Control, 39(1), 191–196.MATHCrossRefMathSciNet
23.
go back to reference Zhang, J., Zheng, D., & Chiang, M. (2007). The impact of stochastic noisy feedback on distributed network utility maximization. IEEE INFOCOM. Zhang, J., Zheng, D., & Chiang, M. (2007). The impact of stochastic noisy feedback on distributed network utility maximization. IEEE INFOCOM.
24.
go back to reference Sharma, G., Mazumdar, R., & Shroff, N. (2007). Joint congestion control and distributed scheduling for throughput guarantees in wireless networks. IEEE INFOCOM. Sharma, G., Mazumdar, R., & Shroff, N. (2007). Joint congestion control and distributed scheduling for throughput guarantees in wireless networks. IEEE INFOCOM.
25.
go back to reference Le, L., & Mazumdar, R. R. (2008). Appropriate control of wireless networks with flow level dynamics. CISS’08. Le, L., & Mazumdar, R. R. (2008). Appropriate control of wireless networks with flow level dynamics. CISS’08.
26.
go back to reference Zorzi, M., & Rao, R. R. (1994). Capture and retransmission control in mobile radio. IEEE Journal on Selected Areas in Communications, 12(8), 1289–1298.CrossRef Zorzi, M., & Rao, R. R. (1994). Capture and retransmission control in mobile radio. IEEE Journal on Selected Areas in Communications, 12(8), 1289–1298.CrossRef
27.
go back to reference Kim, J. H., & Lee, J. K. (1999). Capture effects of wireless CSMA/CA protocols in Rayleigh and shadow fading channels. IEEE Transactions on Vehicular Technology, 48(4), 1277–1286.CrossRef Kim, J. H., & Lee, J. K. (1999). Capture effects of wireless CSMA/CA protocols in Rayleigh and shadow fading channels. IEEE Transactions on Vehicular Technology, 48(4), 1277–1286.CrossRef
28.
go back to reference Hoang, D., & Iltis, R. A. (2008). Performance evaluation of multi-hop CSMA/CA networks in fading environments. IEEE Transactions on Communications, 56(1), 112–125.CrossRefMathSciNet Hoang, D., & Iltis, R. A. (2008). Performance evaluation of multi-hop CSMA/CA networks in fading environments. IEEE Transactions on Communications, 56(1), 112–125.CrossRefMathSciNet
29.
go back to reference Yang, X., & Vaidya, N. (2005). On physical carrier sensing in wireless ad hoc networks. IEEE INFOCOM. Yang, X., & Vaidya, N. (2005). On physical carrier sensing in wireless ad hoc networks. IEEE INFOCOM.
30.
go back to reference Cali, F., Conti, M., & Gregori, E. (2000). Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Transactions on Networking, 8(6), 785–799.CrossRef Cali, F., Conti, M., & Gregori, E. (2000). Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Transactions on Networking, 8(6), 785–799.CrossRef
31.
go back to reference Garetto, M., Salonidis, T., & Knightly, E. W. (2006). Modeling per-flow throughput and capturing starvation in CSMA multi-hop wireless networks. IEEE INFOCOM. Garetto, M., Salonidis, T., & Knightly, E. W. (2006). Modeling per-flow throughput and capturing starvation in CSMA multi-hop wireless networks. IEEE INFOCOM.
32.
go back to reference Xu, K., Gerla, M., & Bae, S. (2002). How effective is the IEEE 802.11 RTS/CTS handshake in ad hoc networks. IEEE GLOBECOM. Xu, K., Gerla, M., & Bae, S. (2002). How effective is the IEEE 802.11 RTS/CTS handshake in ad hoc networks. IEEE GLOBECOM.
33.
go back to reference Jung, E. S., & Vaidya, N. H. (2005). A power control MAC protocol for ad hoc networks. Wireless Networks, 11, 55–66.CrossRef Jung, E. S., & Vaidya, N. H. (2005). A power control MAC protocol for ad hoc networks. Wireless Networks, 11, 55–66.CrossRef
34.
go back to reference Hass, Z. J., & Deng, J. (2002). Dual busy tone multiple access (DBTMA)—A multiple access control scheme for ad hoc networks. IEEE Transactions on Communications, 50(6), 975–985.CrossRef Hass, Z. J., & Deng, J. (2002). Dual busy tone multiple access (DBTMA)—A multiple access control scheme for ad hoc networks. IEEE Transactions on Communications, 50(6), 975–985.CrossRef
35.
go back to reference Tobagi, F. A., & Kleinrock, L. (1975). Packet switching in radio channels: Part II—The hidden terminal problem in carrier sense multiple-access and the busy-tone solution. IEEE Transactions on Communications, 23(12), 1417–1433.MATHCrossRef Tobagi, F. A., & Kleinrock, L. (1975). Packet switching in radio channels: Part II—The hidden terminal problem in carrier sense multiple-access and the busy-tone solution. IEEE Transactions on Communications, 23(12), 1417–1433.MATHCrossRef
36.
go back to reference Ma, K., Mazumdar, R. R., & Luo, J. (2008). On the performance of primal/dual schemes for congestion control in networks with dynamic flows. IEEE INFOCOM. Ma, K., Mazumdar, R. R., & Luo, J. (2008). On the performance of primal/dual schemes for congestion control in networks with dynamic flows. IEEE INFOCOM.
37.
go back to reference Sridharan, A., Moeller, S., & Krishnamachari, B. (2008). Making distributed rate control using Lyapunov drifts a reality in wireless sensor networks. WiOpt. Sridharan, A., Moeller, S., & Krishnamachari, B. (2008). Making distributed rate control using Lyapunov drifts a reality in wireless sensor networks. WiOpt.
38.
go back to reference Warrier, A., Janakiraman, S., & Rhee, I. (2009). DiffQ: Practical differential backlog congestion control for wireless networks. IEEE INFOCOM. Warrier, A., Janakiraman, S., & Rhee, I. (2009). DiffQ: Practical differential backlog congestion control for wireless networks. IEEE INFOCOM.
39.
go back to reference Neely, M., Modiano, E., & Rohrs, C. (2003) Power allocation and routing in multibeam satellites with time-varying channels. IEEE/ACM Transactions on Networking, 11(1), 138–152.CrossRef Neely, M., Modiano, E., & Rohrs, C. (2003) Power allocation and routing in multibeam satellites with time-varying channels. IEEE/ACM Transactions on Networking, 11(1), 138–152.CrossRef
Metadata
Title
Control of wireless networks with flow level dynamics under constant time scheduling
Authors
Long Bao Le
Ravi R. Mazumdar
Publication date
01-07-2010
Publisher
Springer US
Published in
Wireless Networks / Issue 5/2010
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-009-0208-8

Other articles of this Issue 5/2010

Wireless Networks 5/2010 Go to the issue