Skip to main content
Top

2018 | Supplement | Chapter

Controlled Porosity Structures in Aluminum and Titanium Alloys by Selective Laser Melting

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Stochastic and non-stochastic porous structures, are used in a variety of applications such as biomedical implants, heat exchangers mass and gas separation, water purification, energy conversion and storage due to their interesting combinations of physical and mechanical properties, such as high stiffness in conjunction with very low specific weight or high gas permeability combined with high thermal conductivity. Among the technologies for the production of these porous structures, the additive manufacturing (AM) processes, such as the powder bed based selective laser melting (SLM), are of particular interest. In order to obtain this kind of structures with SLM, it is important to know the relationship between process parameters and material employed. A series of experiments were carried out to analyze the influence of the main SLM process parameters on the width and continuity of manufacture of non-stochastic porous structures and to manufacture stochastic porous structures through the scanning strategy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hasib, H., Rennie, A., Burns, N., Geekie, L.: Non-stochastic lattice structures for novel filter applications fabricated via additive manufacturing. In: The Filtration Society 50th Anniversary International Conference and Exhibition: Proceedings of the Filtration Society, Filtration Society 50th Anniversary Conference, Chester, United Kingdom, 13–14 November (2014) Hasib, H., Rennie, A., Burns, N., Geekie, L.: Non-stochastic lattice structures for novel filter applications fabricated via additive manufacturing. In: The Filtration Society 50th Anniversary International Conference and Exhibition: Proceedings of the Filtration Society, Filtration Society 50th Anniversary Conference, Chester, United Kingdom, 13–14 November (2014)
2.
go back to reference Tsinoglou, D.N., Eggenschwiler, P.D., Thurnheer, T., Hofer, P.: A simplified model for natural-gas vehicle catalysts with honeycomb and foam substrates. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 223(6), 819–834 (2009)CrossRef Tsinoglou, D.N., Eggenschwiler, P.D., Thurnheer, T., Hofer, P.: A simplified model for natural-gas vehicle catalysts with honeycomb and foam substrates. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 223(6), 819–834 (2009)CrossRef
3.
go back to reference Heikkinen, M.S.A., Harley, N.H.: Experimental investigation of sintered porous metal filters. J. Aerosol Sci. 31(6), 721–738 (2000)CrossRef Heikkinen, M.S.A., Harley, N.H.: Experimental investigation of sintered porous metal filters. J. Aerosol Sci. 31(6), 721–738 (2000)CrossRef
4.
go back to reference Yadroitsev, I., Shishkovsky, I., Bertrand, P., Smurov, I.: Manufacturing of fine-structured 3D porous filter elements by selective laser melting. Appl. Surf. Sci. 255, 5523–5527 (2009)CrossRef Yadroitsev, I., Shishkovsky, I., Bertrand, P., Smurov, I.: Manufacturing of fine-structured 3D porous filter elements by selective laser melting. Appl. Surf. Sci. 255, 5523–5527 (2009)CrossRef
5.
go back to reference Burns, N.R.: Why AM now has the potential to revolutionise filtration solutions. Filtr. + Sep. 51(2), 42–43 (2014)CrossRef Burns, N.R.: Why AM now has the potential to revolutionise filtration solutions. Filtr. + Sep. 51(2), 42–43 (2014)CrossRef
6.
go back to reference Vijayakumar, B., Rennie, A., Burns, N., Battersby, P., Burns, M.: Introducing functionality to the filter media. In: Filter Media 6, International Conference and Exhibition. The Filtration Society, Chester, UK (2013) Vijayakumar, B., Rennie, A., Burns, N., Battersby, P., Burns, M.: Introducing functionality to the filter media. In: Filter Media 6, International Conference and Exhibition. The Filtration Society, Chester, UK (2013)
7.
go back to reference Hasib, H.: Mechanical behavior of non-stochastic Ti-6Al-4V cellular structures produced via electron beam melting (EBM), Master’s thesis, North Carolina State University, USA (2011) Hasib, H.: Mechanical behavior of non-stochastic Ti-6Al-4V cellular structures produced via electron beam melting (EBM), Master’s thesis, North Carolina State University, USA (2011)
8.
go back to reference Abele, E., Stoffregen, H.A., Kniepkamp, M., Lang, S., Hampe, M.: Selective laser melting for manufacturing of thin-walled porous elements. J. Mater. Process. Technol. 215, 114–122 (2015)CrossRef Abele, E., Stoffregen, H.A., Kniepkamp, M., Lang, S., Hampe, M.: Selective laser melting for manufacturing of thin-walled porous elements. J. Mater. Process. Technol. 215, 114–122 (2015)CrossRef
9.
go back to reference Song, C., Yang, Y., Liu, Y., Luo, Z., Yu, J.K.: Study on manufacturing of W-Cu alloy thin wall parts by selective laser melting. Int. J. Adv. Manuf. Technol. 78, 885–893 (2015)CrossRef Song, C., Yang, Y., Liu, Y., Luo, Z., Yu, J.K.: Study on manufacturing of W-Cu alloy thin wall parts by selective laser melting. Int. J. Adv. Manuf. Technol. 78, 885–893 (2015)CrossRef
10.
go back to reference Mumtaz, K.A., Hopkinson, N.: Selective laser melting of thin wall parts using pulse shaping. J. Mater. Process. Technol. 210, 279–287 (2010)CrossRef Mumtaz, K.A., Hopkinson, N.: Selective laser melting of thin wall parts using pulse shaping. J. Mater. Process. Technol. 210, 279–287 (2010)CrossRef
11.
go back to reference Stamp, R., Fox, P., O’Neill, W., Jones, E., Sutcliffe, C.: The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting. J. Mater. Sci. Mater. Med. 20, 1839–1848 (2009)CrossRef Stamp, R., Fox, P., O’Neill, W., Jones, E., Sutcliffe, C.: The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting. J. Mater. Sci. Mater. Med. 20, 1839–1848 (2009)CrossRef
12.
go back to reference Zhang, S., Wei, Q., Cheng, L., Li, S., Shi, Y.: Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting. Mater. Des. 63, 185–193 (2014)CrossRef Zhang, S., Wei, Q., Cheng, L., Li, S., Shi, Y.: Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting. Mater. Des. 63, 185–193 (2014)CrossRef
13.
go back to reference Song, Y.A., Koenig, W.: Experimental study of the basic process mechanism for direct selective laser sintering of low-melting metallic powder. In: 47th General Assembly of CIRP (1997). Manuf. Technol. 46(1), 127–130 Song, Y.A., Koenig, W.: Experimental study of the basic process mechanism for direct selective laser sintering of low-melting metallic powder. In: 47th General Assembly of CIRP (1997). Manuf. Technol. 46(1), 127–130
14.
go back to reference Das, S., Beaman, J.J., Wohlert, M., Bourell, D.L.: Direct laser freeform fabrication of high performance metal components. Rapid Prototyp. J. 4(3), 112–117 (1998)CrossRef Das, S., Beaman, J.J., Wohlert, M., Bourell, D.L.: Direct laser freeform fabrication of high performance metal components. Rapid Prototyp. J. 4(3), 112–117 (1998)CrossRef
15.
go back to reference Simchi, A.: Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 428(1–2), 148–158 (2006)CrossRef Simchi, A.: Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 428(1–2), 148–158 (2006)CrossRef
16.
go back to reference Agarwala, M., Bourell, D., Beaman, J., Marcus, H., Barlow, J.: Direct selective laser sintering of metals. Rapid Prototyp. J. 1(1), 26–36 (1995)CrossRef Agarwala, M., Bourell, D., Beaman, J., Marcus, H., Barlow, J.: Direct selective laser sintering of metals. Rapid Prototyp. J. 1(1), 26–36 (1995)CrossRef
17.
go back to reference Wang, X.C., Laoui, T., Bonse, J., Kruth, J.P., Lauwers, B., Froyen, L.: Direct selective laser sintering of hard metal powders: experimental study and simulation. Int. J. Adv. Manuf. Technol. 19(5), 351–357 (2002)CrossRef Wang, X.C., Laoui, T., Bonse, J., Kruth, J.P., Lauwers, B., Froyen, L.: Direct selective laser sintering of hard metal powders: experimental study and simulation. Int. J. Adv. Manuf. Technol. 19(5), 351–357 (2002)CrossRef
18.
go back to reference Manfredi, D., Calignano, F., Krishnan, M., Canali, R., Ambrosio, E.P., Atzeni, E.: From powders to dense metal parts: characterization of a commercial AlSiMg alloy processed through direct metal laser sintering. Materials 6, 856–869 (2013)CrossRef Manfredi, D., Calignano, F., Krishnan, M., Canali, R., Ambrosio, E.P., Atzeni, E.: From powders to dense metal parts: characterization of a commercial AlSiMg alloy processed through direct metal laser sintering. Materials 6, 856–869 (2013)CrossRef
19.
go back to reference Ning, Y., Wong, Y.S., Fuh, J.Y.H., Loh, H.T.: An approach to minimize build errors in direct metal laser sintering. IEEE Trans. Autom. Sci. Eng. 3(1), 73–80 (2006)CrossRef Ning, Y., Wong, Y.S., Fuh, J.Y.H., Loh, H.T.: An approach to minimize build errors in direct metal laser sintering. IEEE Trans. Autom. Sci. Eng. 3(1), 73–80 (2006)CrossRef
20.
go back to reference Ning, Y., Wong, Y.S., Fuh, J.Y.H.: Effect and control of hatch length on material properties in the direct metal laser sintering process. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 219(1), 15–25 (2005)CrossRef Ning, Y., Wong, Y.S., Fuh, J.Y.H.: Effect and control of hatch length on material properties in the direct metal laser sintering process. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 219(1), 15–25 (2005)CrossRef
21.
go back to reference Yang, L.: Structural design, optimization and application of 3D re‐entrant auxetic structures. Ph.D. dissertation. North Carolina State University. Raleigh, NC, USA (2011) Yang, L.: Structural design, optimization and application of 3D re‐entrant auxetic structures. Ph.D. dissertation. North Carolina State University. Raleigh, NC, USA (2011)
22.
go back to reference Gumruk, R., Mines, R.A.W.: Compressive behaviour of stainless steel micro-lattice structures. Int. J. Mech. Sci. 68, 125–139 (2013)CrossRef Gumruk, R., Mines, R.A.W.: Compressive behaviour of stainless steel micro-lattice structures. Int. J. Mech. Sci. 68, 125–139 (2013)CrossRef
23.
go back to reference Yan, C., Hao, L., Hussein, A., Raymont, D.: Evaluations of cellular lattice structures manufactured using selective laser melting. Int. J. Mach. Tools Manuf 62, 32–38 (2012)CrossRef Yan, C., Hao, L., Hussein, A., Raymont, D.: Evaluations of cellular lattice structures manufactured using selective laser melting. Int. J. Mach. Tools Manuf 62, 32–38 (2012)CrossRef
24.
go back to reference Calignano, F.: Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting. Mater. Des. 64, 203–213 (2014)CrossRef Calignano, F.: Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting. Mater. Des. 64, 203–213 (2014)CrossRef
25.
go back to reference Calignano, F., Manfredi, D., Ambrosio, E.P., Iuliano, L., Fino, P.: Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int. J. Adv. Manuf. Technol. 67, 2743–2751 (2013)CrossRef Calignano, F., Manfredi, D., Ambrosio, E.P., Iuliano, L., Fino, P.: Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int. J. Adv. Manuf. Technol. 67, 2743–2751 (2013)CrossRef
26.
go back to reference Ventola, L., Robotti, F., Dialameh, M., Calignano, F., Manfredi, D., Chiavazzo, E., Asinari, P.: Rough surfaces with enhanced heat transfer for electronics cooling by direct metal laser sintering. Int. J. Heat Mass Transf. 75, 58–74 (2014)CrossRef Ventola, L., Robotti, F., Dialameh, M., Calignano, F., Manfredi, D., Chiavazzo, E., Asinari, P.: Rough surfaces with enhanced heat transfer for electronics cooling by direct metal laser sintering. Int. J. Heat Mass Transf. 75, 58–74 (2014)CrossRef
27.
go back to reference Spierings, A.B., Levy, G.: Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades. In: Proceedings of the Annual International Solid Freeform Fabrication Symposium, Austin, Texas, pp. 342–353 (2009) Spierings, A.B., Levy, G.: Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades. In: Proceedings of the Annual International Solid Freeform Fabrication Symposium, Austin, Texas, pp. 342–353 (2009)
28.
go back to reference Spierings, A., Herres, N., Levy, G.: Influence of the particle size distribution on surface quality and mechanical properties in am steel parts. Rapid Prototyp. J. 17(3), 195–202 (2011)CrossRef Spierings, A., Herres, N., Levy, G.: Influence of the particle size distribution on surface quality and mechanical properties in am steel parts. Rapid Prototyp. J. 17(3), 195–202 (2011)CrossRef
29.
go back to reference Lee, Y.S., Zhang, W.: Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing. In: Annual International Solid Freeform Fabrication Symposium, Austin, TX, pp. 1154–1165, August 2015 Lee, Y.S., Zhang, W.: Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing. In: Annual International Solid Freeform Fabrication Symposium, Austin, TX, pp. 1154–1165, August 2015
30.
go back to reference Manfredi, D., Calignano, F., Krishnan, M., Canali, R., Ambrosio, E.P., Biamino, S., Ugues, D., Pavese, M., Fino, P.: Additive manufacturing of Al alloys and Aluminium Matrix Composites (AMCs). In: Monteiro, W.A. (ed.) Light Metal Alloys Applications (2014). ISBN 978-953-51-1588-5 Manfredi, D., Calignano, F., Krishnan, M., Canali, R., Ambrosio, E.P., Biamino, S., Ugues, D., Pavese, M., Fino, P.: Additive manufacturing of Al alloys and Aluminium Matrix Composites (AMCs). In: Monteiro, W.A. (ed.) Light Metal Alloys Applications (2014). ISBN 978-953-51-1588-5
31.
go back to reference Klahn, C., Meboldt, M.: Integration of gas-permeable structures in laser additive manufactured products. In: Additive Manufacturing: Innovations, Advances, and Applications. Taylor & Francis Group (2016) Klahn, C., Meboldt, M.: Integration of gas-permeable structures in laser additive manufactured products. In: Additive Manufacturing: Innovations, Advances, and Applications. Taylor & Francis Group (2016)
Metadata
Title
Controlled Porosity Structures in Aluminum and Titanium Alloys by Selective Laser Melting
Authors
Flaviana Calignano
Giulio Cattano
Luca Iuliano
Diego Manfredi
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-66866-6_18

Premium Partners