Skip to main content
Top
Published in:
Cover of the book

2022 | OriginalPaper | Chapter

Controlled Tapping—The Research Project

Authors : Merete Tangstad, Michal Ksiazek, Jan Erik Olsen, Quinn Reynolds, Eli Ringdalen

Published in: Furnace Tapping 2022

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Controlled Tapping is a research project funded by the Norwegian Research Council and the Norwegian silicon and ferroalloy industry. The overall goal of the industry is to minimize the amount of uneven tappings and thus to reduce the energy consumption and the risk of hazardous events. In addition, the gassing, in the silicon industry, and the slag/metal separation in the ferroalloy industry, is a concern. The project Controlled Tapping will give fundamental and industrial knowledge to the industry, so these concerns can be addressed. The project focus is how the furnace interior, that is the furnace operation, is affecting the tapping. Tapping is an experience based sub-process that is developed over time at the various plants. To expand the knowledge into the scientific world, numerical modelling is a valuable tool and is the basis in the project. This has been done in SINTEF, NTNU in cooperation with Mintek. A variety of models have been developed calculating the tapping rate. Models describing the whole furnace with accumulated materials, e.g. TiC banks in the SiMn furnace, models that describes the slag metal separation in cascade tapping with various ladle positions, and models describing the tapping where the slag and metal properties are changed, has been developed. For a models to give the true picture, realistic input data is needed, and one of the Ph.D. projects has been to measure the interfacial tension between slag and metal in Mn-ferroalloy production. We also need to know the mechanisms affecting the tapping of industrial furnaces and on the consequences if furnaces accumulate metal and slag. Both industrial campaigns and investigations on mechanisms and material at the lab has been conducted. The industrial campaigns have been to excavate both Mn-ferroalloy and Si furnaces, to find that the tapped silicon is above 1800 °C when all literature says 1600 °C, to see the variances of the metal and slag during a tapping-cycle and over a year and investigating the energy in the gassing. In lab scale, the formation of TiC banks in the SiMn furnaces, the formation of slag, and the formation of SiO gas in Si furnaces and the pressure build up in charges by fines, have been investigated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Schei A, Tuset JK, Tveit H (1998) Production of high silicon alloys. Tapir Forlag, Trondheim. ISBN 82-519-1317-9 Schei A, Tuset JK, Tveit H (1998) Production of high silicon alloys. Tapir Forlag, Trondheim. ISBN 82-519-1317-9
2.
go back to reference Tangstad M (2013) Ferrosilicon and silicon technology. In: Gasik M (ed) Handbook of ferroalloys: theory and technology. Elsevier Ltd., Butterworth-Heinemann, Oxford, pp 179–220CrossRef Tangstad M (2013) Ferrosilicon and silicon technology. In: Gasik M (ed) Handbook of ferroalloys: theory and technology. Elsevier Ltd., Butterworth-Heinemann, Oxford, pp 179–220CrossRef
3.
go back to reference Olsen S, Tangstad M, Lindstad T (2007) Production of manganese ferroalloys. Tapir Forlag, Trondheim. ISBN-978-82-519-2191-6 Olsen S, Tangstad M, Lindstad T (2007) Production of manganese ferroalloys. Tapir Forlag, Trondheim. ISBN-978-82-519-2191-6
4.
go back to reference Tangstad M (2013) Manganese ferroalloys technology. In: Gasik M (ed) Handbook of ferroalloys: theory and technology. Elsevier Ltd., Butterworth-Heinemann, Oxford, pp 221–266CrossRef Tangstad M (2013) Manganese ferroalloys technology. In: Gasik M (ed) Handbook of ferroalloys: theory and technology. Elsevier Ltd., Butterworth-Heinemann, Oxford, pp 221–266CrossRef
6.
go back to reference Steenkamp J (2014) Chemical wear of carbon-based refractory materials in a silicomanganese furnace tap-hole. PhD-thesis, University of Pretoria Steenkamp J (2014) Chemical wear of carbon-based refractory materials in a silicomanganese furnace tap-hole. PhD-thesis, University of Pretoria
7.
go back to reference Tranell G, Andersson M, Ringdalen E, Ostrovski O, Steimo JJ (2010) Reaction zones in a FeSi75 furnace-results from industrial excavation. In: Infacon XII, Helsinki, Finland Tranell G, Andersson M, Ringdalen E, Ostrovski O, Steimo JJ (2010) Reaction zones in a FeSi75 furnace-results from industrial excavation. In: Infacon XII, Helsinki, Finland
8.
go back to reference Tangstad M, Ksiazek M, Andersen JE (2014) Zones and materials in the Si furnace. Silicon for the chemical and solar industry XII. Trondheim, Norway Tangstad M, Ksiazek M, Andersen JE (2014) Zones and materials in the Si furnace. Silicon for the chemical and solar industry XII. Trondheim, Norway
9.
go back to reference Ksiazek M, Tangstad M, Ringdalen E (2016) Five furnaces five different stories. Silicon for the chemical and solar industry XIII. Kristiansand, Norway Ksiazek M, Tangstad M, Ringdalen E (2016) Five furnaces five different stories. Silicon for the chemical and solar industry XIII. Kristiansand, Norway
10.
go back to reference Barcza NA, Koursaris A, See JB, Gericke WA (1979) The “dig out” of a 75 MVA high carbon ferromanganese electric furnace. In: 37th Electric furnace conference proceedings, Detroit, AIME, 1979, pp 19–33 Barcza NA, Koursaris A, See JB, Gericke WA (1979) The “dig out” of a 75 MVA high carbon ferromanganese electric furnace. In: 37th Electric furnace conference proceedings, Detroit, AIME, 1979, pp 19–33
11.
go back to reference Olsen SE, Tangstad M (2004) Silicomanganese production—process understanding. In: Proceedings/INFACON 2004, vol 10, pp 231–238 Olsen SE, Tangstad M (2004) Silicomanganese production—process understanding. In: Proceedings/INFACON 2004, vol 10, pp 231–238
12.
go back to reference Kadkhodabeigi M (2010) Modeling of tapping processes in submerged arc furnaces. PhD thesis, NTNU, Trondheim, Norway Kadkhodabeigi M (2010) Modeling of tapping processes in submerged arc furnaces. PhD thesis, NTNU, Trondheim, Norway
13.
go back to reference Kadkhodabeigi M, Tveit H, Johansen ST (2011) Modelling of the tapping process in submerged arc furnaces used in high silicon alloys production. ISIJ Int 51(2):193–202CrossRef Kadkhodabeigi M, Tveit H, Johansen ST (2011) Modelling of the tapping process in submerged arc furnaces used in high silicon alloys production. ISIJ Int 51(2):193–202CrossRef
14.
go back to reference Kadkhodabeigi M, Tveit H, Johansen ST (2011) Modelling of the effect of furnace crater pressure on the melt and gas flows in the submerged arc furnaces used for silicon production. J Pro Comp Fluid Dyn 10(5/6):374–383CrossRef Kadkhodabeigi M, Tveit H, Johansen ST (2011) Modelling of the effect of furnace crater pressure on the melt and gas flows in the submerged arc furnaces used for silicon production. J Pro Comp Fluid Dyn 10(5/6):374–383CrossRef
16.
go back to reference Bublik S, Bao S, Tangstad M, Einarsrud KE (2019) Slag-metal interactions in the FeMn tapping process: interfacial properties and wetting. In: Liquid metal processing & casting conference, England, 8–11 Sept 2019 Bublik S, Bao S, Tangstad M, Einarsrud KE (2019) Slag-metal interactions in the FeMn tapping process: interfacial properties and wetting. In: Liquid metal processing & casting conference, England, 8–11 Sept 2019
17.
go back to reference Bublik S, Einarsrud KE (2020) Inverse modelling of interfacial tension between ferroalloy and slag using OpenFOAM. In: 14th International conference on computational fluid dynamics in the oil & gas. Metallurgical and Process Industries (CFD 2020), 12–14 Oct 2020 Bublik S, Einarsrud KE (2020) Inverse modelling of interfacial tension between ferroalloy and slag using OpenFOAM. In: 14th International conference on computational fluid dynamics in the oil & gas. Metallurgical and Process Industries (CFD 2020), 12–14 Oct 2020
19.
go back to reference Reynolds QG, Olsen JE (2021) Modelling of metal loss in ferromanganese furnace tapping operations, materials processing fundamentals 2021, pp 83–92 Reynolds QG, Olsen JE (2021) Modelling of metal loss in ferromanganese furnace tapping operations, materials processing fundamentals 2021, pp 83–92
20.
go back to reference Folstad MB, Tangstad M, Ringdalen E, Fredriksli R, Dalum S (2018) Tapping procedures in silicon production, and the role of female tapping operators. In: Tapping conference, South Africa, 14–17 Oct 2018 Folstad MB, Tangstad M, Ringdalen E, Fredriksli R, Dalum S (2018) Tapping procedures in silicon production, and the role of female tapping operators. In: Tapping conference, South Africa, 14–17 Oct 2018
21.
go back to reference Folstad MB, Yu H, Wang H, Tangstad M (2021) Formation of slag in Si furnaces. In: Molten 2021, South Korea, 21–25 Feb 2021 Folstad MB, Yu H, Wang H, Tangstad M (2021) Formation of slag in Si furnaces. In: Molten 2021, South Korea, 21–25 Feb 2021
22.
go back to reference Folstad MB, Ksiazek MT, Tangstad M (2020) Slag in the tapping area in a Si furnace. I: Silicon for the chemical and solar industry XV. NTNU, Trondheim, pp 119–127. ISBN 978-82-997357-9-7 Folstad MB, Ksiazek MT, Tangstad M (2020) Slag in the tapping area in a Si furnace. I: Silicon for the chemical and solar industry XV. NTNU, Trondheim, pp 119–127. ISBN 978-82-997357-9-7
24.
go back to reference Johansen ST, Ringdalen E (2018) Reduced metal loss to slag in HC FeCr production—by redesign based on mathematical modelling. In: Furnace tapping 2018, South Africa, 14–17 Oct 2018 Johansen ST, Ringdalen E (2018) Reduced metal loss to slag in HC FeCr production—by redesign based on mathematical modelling. In: Furnace tapping 2018, South Africa, 14–17 Oct 2018
25.
go back to reference Ksiazek MT, Tangstad M, Ringdalen E, Grådahl S, Hustad HM, Holtan J, Nymoen AB, Kaukonen S (2018) Measurement of metal temperature during tapping of an industrial FeSi furnace. In: Furnace tapping conference, South Africa, 14–17 Oct 2018 Ksiazek MT, Tangstad M, Ringdalen E, Grådahl S, Hustad HM, Holtan J, Nymoen AB, Kaukonen S (2018) Measurement of metal temperature during tapping of an industrial FeSi furnace. In: Furnace tapping conference, South Africa, 14–17 Oct 2018
26.
go back to reference Olsen JE (2020) A CFD study on the impact of barriers and nonuniformities on furnace tapping. In: 14th International conference on computational fluid dynamics in the oil & gas, metallurgical and process industries, 12–14 Oct 2020 Olsen JE (2020) A CFD study on the impact of barriers and nonuniformities on furnace tapping. In: 14th International conference on computational fluid dynamics in the oil & gas, metallurgical and process industries, 12–14 Oct 2020
27.
go back to reference Olsen JE, Reynolds Q, Erwee M (2018) Temperature field at the tap-hole in manganese furnace—a computational modelling study. In: Furnace tapping 2018, 14–17 Oct 2018 Olsen JE, Reynolds Q, Erwee M (2018) Temperature field at the tap-hole in manganese furnace—a computational modelling study. In: Furnace tapping 2018, 14–17 Oct 2018
28.
go back to reference Olsen JE, Reynolds QG (2020) Mathematical modeling of furnace drainage while tapping slag and metal through a single tap-hole. Metall Mater Trans B 51:1750–1759 Olsen JE, Reynolds QG (2020) Mathematical modeling of furnace drainage while tapping slag and metal through a single tap-hole. Metall Mater Trans B 51:1750–1759
29.
go back to reference Reynolds Q, Olsen JE, Erwee M, Oxtoby O (2018) Phase effects in tap-hole flow—a computational modelling study. In: Furnace tapping 2018, South Africa, 14–17 Oct 2018 Reynolds Q, Olsen JE, Erwee M, Oxtoby O (2018) Phase effects in tap-hole flow—a computational modelling study. In: Furnace tapping 2018, South Africa, 14–17 Oct 2018
30.
go back to reference Olsen JE, Hoem M (2018) Modelling heat loss in metal runner during furnace tapping. In: CFD 2018. SINTEF Industry, Melbourne, p 273 Olsen JE, Hoem M (2018) Modelling heat loss in metal runner during furnace tapping. In: CFD 2018. SINTEF Industry, Melbourne, p 273
31.
go back to reference Ringdalen EK, Tomasz M (2018) Excavation of SiMn-furnace. In: Furnace tapping 2018, South Africa, 14–18 Oct 2018 Ringdalen EK, Tomasz M (2018) Excavation of SiMn-furnace. In: Furnace tapping 2018, South Africa, 14–18 Oct 2018
32.
go back to reference Sindland C, Tangstad M (2021) Production rate of SiO gas from industrial quartz and silicon. Metall Mater Trans B 52:1755–1771 Sindland C, Tangstad M (2021) Production rate of SiO gas from industrial quartz and silicon. Metall Mater Trans B 52:1755–1771
33.
go back to reference Tesfahunegn Y, Magnusson T, Tangstad M, Saevarsdottir G (2018) Effect of electrode shape on the current distribution in submerged arc furnaces for silicon production—a modelling approach. In: Symposium series—Southern African Institute of Mining and Metallurgy 2018, vol 118, no 6, pp 595–600 Tesfahunegn Y, Magnusson T, Tangstad M, Saevarsdottir G (2018) Effect of electrode shape on the current distribution in submerged arc furnaces for silicon production—a modelling approach. In: Symposium series—Southern African Institute of Mining and Metallurgy 2018, vol 118, no 6, pp 595–600
34.
go back to reference Tveit H, Ringdalen E, Edfeldt H (2020) Important parameters that control the crater pressure in a silicon furnace. In: Digital conference, Silicon for chemical and solar industry, Trondheim, Norway, 15–18 June 2020 Tveit H, Ringdalen E, Edfeldt H (2020) Important parameters that control the crater pressure in a silicon furnace. In: Digital conference, Silicon for chemical and solar industry, Trondheim, Norway, 15–18 June 2020
35.
go back to reference Tangstad M et al (2021) Conceptual model of tapping mechanisms in a FeSi/Si furnaces. In: InfaconXVI, Trondheim, Norway, 27–29 Sept 2021 Tangstad M et al (2021) Conceptual model of tapping mechanisms in a FeSi/Si furnaces. In: InfaconXVI, Trondheim, Norway, 27–29 Sept 2021
36.
go back to reference Jusnes KF et al (2021) Investigation of slag composition and possible relation to furnace operation of a FeSi75 furnace. In: InfaconXVI, Trondheim, Norway, 27–29 Sept 2021 Jusnes KF et al (2021) Investigation of slag composition and possible relation to furnace operation of a FeSi75 furnace. In: InfaconXVI, Trondheim, Norway, 27–29 Sept 2021
37.
go back to reference Folstad MB, Tangstad M (2021) SiO2-CaO-Al2O3 slags in Si/FeSi furnaces. In: InfaconXVI, Trondheim, Norway, 27–29 Sept 2021 Folstad MB, Tangstad M (2021) SiO2-CaO-Al2O3 slags in Si/FeSi furnaces. In: InfaconXVI, Trondheim, Norway, 27–29 Sept 2021
38.
go back to reference Øvrelid S et al (2021) Excavation and analysis of a 31 MW SiMn-furnace at Eramet Kvinesdal. In: InfaconXVI, Trondheim, Norway, 27–29 Sept 2021 Øvrelid S et al (2021) Excavation and analysis of a 31 MW SiMn-furnace at Eramet Kvinesdal. In: InfaconXVI, Trondheim, Norway, 27–29 Sept 2021
39.
go back to reference Reynolds Q et al (2021) Variability in ferroalloy furnace tapping—insights from modelling. In: InfaconXVI, Trondheim, Norway, 27–29 Sept 2021 Reynolds Q et al (2021) Variability in ferroalloy furnace tapping—insights from modelling. In: InfaconXVI, Trondheim, Norway, 27–29 Sept 2021
40.
go back to reference Olsen JE et al (2021) CFD modelling of inconsistent furnace tappings. In: InfaconXVI, Trondheim, Norway, 27–29 Sept 2021 Olsen JE et al (2021) CFD modelling of inconsistent furnace tappings. In: InfaconXVI, Trondheim, Norway, 27–29 Sept 2021
41.
go back to reference Loomba V et al (2021) Simulation of metal and slag in a SiMn furnace during production and tapping. In: InfaconXVI, Trondheim, Norway, 27–29 Sept 2021 Loomba V et al (2021) Simulation of metal and slag in a SiMn furnace during production and tapping. In: InfaconXVI, Trondheim, Norway, 27–29 Sept 2021
42.
go back to reference Canaguier V, Ringdalen E (2021) Carbide formation and accumulation in SiMn furnaces. In: InfaconXVI, Trondheim, Norway, 27–29 Sept 2021 Canaguier V, Ringdalen E (2021) Carbide formation and accumulation in SiMn furnaces. In: InfaconXVI, Trondheim, Norway, 27–29 Sept 2021
43.
go back to reference Nordnes E (2019) Softening and melting properties of quartz. Master’s thesis in Chemical Engineering and Biotechnology, NTNU Nordnes E (2019) Softening and melting properties of quartz. Master’s thesis in Chemical Engineering and Biotechnology, NTNU
44.
go back to reference Jusnes KF (2020) Phase transformations and thermal degradation in industrial quartz. Doctoral thesis 2020:205, Norwegian University of Science and Technology (NTNU), Trondheim. ISBN 978-82-326-4759-0 (electronic ver.) Jusnes KF (2020) Phase transformations and thermal degradation in industrial quartz. Doctoral thesis 2020:205, Norwegian University of Science and Technology (NTNU), Trondheim. ISBN 978-82-326-4759-0 (electronic ver.)
Metadata
Title
Controlled Tapping—The Research Project
Authors
Merete Tangstad
Michal Ksiazek
Jan Erik Olsen
Quinn Reynolds
Eli Ringdalen
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-92544-4_1

Premium Partners