Skip to main content
Top
Published in: Computational Mechanics 2/2023

16-05-2023 | Original Paper

Convolution Hierarchical Deep-learning Neural Networks (C-HiDeNN): finite elements, isogeometric analysis, tensor decomposition, and beyond

Authors: Ye Lu, Hengyang Li, Lei Zhang, Chanwook Park, Satyajit Mojumder, Stefan Knapik, Zhongsheng Sang, Shaoqiang Tang, Daniel W. Apley, Gregory J. Wagner, Wing Kam Liu

Published in: Computational Mechanics | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a general Convolution Hierarchical Deep-learning Neural Networks (C-HiDeNN) computational framework for solving partial differential equations. This is the first paper of a series of papers devoted to C-HiDeNN. We focus on the theoretical foundation and formulation of the method. The C-HiDeNN framework provides a flexible way to construct high-order \(C^n\) approximation with arbitrary convergence rates and automatic mesh adaptivity. By constraining the C-HiDeNN to build certain functions, it can be degenerated to a specification, the so-called convolution finite element method (C-FEM). The C-FEM will be presented in detail and used to study the numerical performance of the convolution approximation. The C-FEM combines the standard \(C^0\) FE shape function and the meshfree-type radial basis interpolation. It has been demonstrated that the C-FEM can achieve arbitrary orders of smoothness and convergence rates by adjusting the different controlling parameters, such as the patch function dilation parameter and polynomial order, without increasing the degrees of freedom of the discretized systems, compared to FEM. We will also present the convolution tensor decomposition method under the reduced-order modeling setup. The proposed methods are expected to provide highly efficient solutions for extra-large scale problems while maintaining superior accuracy. The applications to transient heat transfer problems in additive manufacturing, topology optimization, GPU-based parallelization, and convolution isogeometric analysis have been discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Liu WK, Li S, Park HS (2022) Eighty years of the finite element method: birth, evolution, and future. Arch Comput Methods Eng 29:4431–4453 Liu WK, Li S, Park HS (2022) Eighty years of the finite element method: birth, evolution, and future. Arch Comput Methods Eng 29:4431–4453
2.
go back to reference Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106MathSciNetMATH Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106MathSciNetMATH
3.
go back to reference Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679MathSciNetMATH Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679MathSciNetMATH
4.
go back to reference Chen JS, Liu WK, Hillman MC, Chi SW, Lian Y, Bessa MA (2017) Reproducing kernel particle method for solving partial differential equations. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, 2nd edn. Wiley, Hoboken, pp 1–44 Chen JS, Liu WK, Hillman MC, Chi SW, Lian Y, Bessa MA (2017) Reproducing kernel particle method for solving partial differential equations. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, 2nd edn. Wiley, Hoboken, pp 1–44
5.
go back to reference Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256MathSciNetMATH Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256MathSciNetMATH
6.
go back to reference Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318MathSciNetMATH Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318MathSciNetMATH
7.
go back to reference Liu M, Liu G (2010) Smoothed particle hydrodynamics (sph): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76MathSciNetMATH Liu M, Liu G (2010) Smoothed particle hydrodynamics (sph): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76MathSciNetMATH
8.
go back to reference Liu W-K, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) methodology and convergence. Comput Methods Appl Mech Eng 143(1–2):113–154MathSciNetMATH Liu W-K, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) methodology and convergence. Comput Methods Appl Mech Eng 143(1–2):113–154MathSciNetMATH
9.
go back to reference Liu WK, Chen Y, Uras RA, Chang CT (1996) Generalized multiple scale reproducing kernel particle methods. Comput Methods Appl Mech Eng 139(1–4):91–157MathSciNetMATH Liu WK, Chen Y, Uras RA, Chang CT (1996) Generalized multiple scale reproducing kernel particle methods. Comput Methods Appl Mech Eng 139(1–4):91–157MathSciNetMATH
10.
go back to reference Li S, Liu WK (1996) Moving least-square reproducing kernel method part ii: Fourier analysis. Comput Methods Appl Mech Eng 139(1–4):159–193MATH Li S, Liu WK (1996) Moving least-square reproducing kernel method part ii: Fourier analysis. Comput Methods Appl Mech Eng 139(1–4):159–193MATH
11.
go back to reference Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195MathSciNetMATH Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195MathSciNetMATH
12.
go back to reference Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using t-splines. Comput Methods Appl Mech Eng 199(5–8):229–263MathSciNetMATH Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using t-splines. Comput Methods Appl Mech Eng 199(5–8):229–263MathSciNetMATH
13.
go back to reference De Lorenzis L, Wriggers P, Hughes TJ (2014) Isogeometric contact: a review. GAMM-Mitteilungen 37(1):85–123MathSciNetMATH De Lorenzis L, Wriggers P, Hughes TJ (2014) Isogeometric contact: a review. GAMM-Mitteilungen 37(1):85–123MathSciNetMATH
14.
go back to reference Belytschko T, Organ D, Gerlach C (2000) Element-free Galerkin methods for dynamic fracture in concrete. Comput Methods Appl Mech Eng 187(3–4):385–399MATH Belytschko T, Organ D, Gerlach C (2000) Element-free Galerkin methods for dynamic fracture in concrete. Comput Methods Appl Mech Eng 187(3–4):385–399MATH
15.
go back to reference Duarte CA, Oden JT (1996) An hp adaptive method using clouds. Comput Methods Appl Mech Eng 139(1–4):237–262MATH Duarte CA, Oden JT (1996) An hp adaptive method using clouds. Comput Methods Appl Mech Eng 139(1–4):237–262MATH
16.
go back to reference Duarte CA, Oden JT (1996) H-p clouds-an h-p meshless method. Numer Methods Partial Differ Equ Int J 12(6):673–705MathSciNetMATH Duarte CA, Oden JT (1996) H-p clouds-an h-p meshless method. Numer Methods Partial Differ Equ Int J 12(6):673–705MathSciNetMATH
17.
go back to reference Oden JT, Duarte C, Zienkiewicz OC (1998) A new cloud-based hp finite element method. Comput Methods Appl Mech Eng 153(1–2):117–126MathSciNetMATH Oden JT, Duarte C, Zienkiewicz OC (1998) A new cloud-based hp finite element method. Comput Methods Appl Mech Eng 153(1–2):117–126MathSciNetMATH
18.
go back to reference Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1–4):289–314MathSciNetMATH Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1–4):289–314MathSciNetMATH
19.
go back to reference Griebel M, Schweitzer MA (2000) A particle-partition of unity method for the solution of elliptic, parabolic, and hyperbolic PDEs. SIAM J Sci Comput 22(3):853–890MathSciNetMATH Griebel M, Schweitzer MA (2000) A particle-partition of unity method for the solution of elliptic, parabolic, and hyperbolic PDEs. SIAM J Sci Comput 22(3):853–890MathSciNetMATH
20.
go back to reference Chen J-S, Wang H-P (2000) New boundary condition treatments in meshfree computation of contact problems. Comput Methods Appl Mech Eng 187(3–4):441–468MathSciNetMATH Chen J-S, Wang H-P (2000) New boundary condition treatments in meshfree computation of contact problems. Comput Methods Appl Mech Eng 187(3–4):441–468MathSciNetMATH
21.
go back to reference Chen J-S, Han W, You Y, Meng X (2003) A reproducing kernel method with nodal interpolation property. Int J Numer Methods Eng 56(7):935–960MathSciNetMATH Chen J-S, Han W, You Y, Meng X (2003) A reproducing kernel method with nodal interpolation property. Int J Numer Methods Eng 56(7):935–960MathSciNetMATH
22.
go back to reference Wagner GJ, Liu WK (2000) Application of essential boundary conditions in mesh-free methods: a corrected collocation method. Int J Numer Methods Eng 47(8):1367–1379MATH Wagner GJ, Liu WK (2000) Application of essential boundary conditions in mesh-free methods: a corrected collocation method. Int J Numer Methods Eng 47(8):1367–1379MATH
23.
go back to reference Wagner GJ, Liu WK (2001) Hierarchical enrichment for bridging scales and mesh-free boundary conditions. Int J Numer Methods Eng 50(3):507–524MATH Wagner GJ, Liu WK (2001) Hierarchical enrichment for bridging scales and mesh-free boundary conditions. Int J Numer Methods Eng 50(3):507–524MATH
24.
go back to reference Han W, Wagner GJ, Liu WK (2002) Convergence analysis of a hierarchical enrichment of Dirichlet boundary conditions in a mesh-free method. Int J Numer Methods Eng 53(6):1323–1336MathSciNetMATH Han W, Wagner GJ, Liu WK (2002) Convergence analysis of a hierarchical enrichment of Dirichlet boundary conditions in a mesh-free method. Int J Numer Methods Eng 53(6):1323–1336MathSciNetMATH
25.
go back to reference Huerta A, Fernández-Méndez S (2000) Enrichment and coupling of the finite element and meshless methods. Int J Numer Methods Eng 48(11):1615–1636MATH Huerta A, Fernández-Méndez S (2000) Enrichment and coupling of the finite element and meshless methods. Int J Numer Methods Eng 48(11):1615–1636MATH
26.
go back to reference Huerta A, Fernández-Méndez S, Liu WK (2004) A comparison of two formulations to blend finite elements and mesh-free methods. Comput Methods Appl Mech Eng 193(12–14):1105–1117MATH Huerta A, Fernández-Méndez S, Liu WK (2004) A comparison of two formulations to blend finite elements and mesh-free methods. Comput Methods Appl Mech Eng 193(12–14):1105–1117MATH
27.
go back to reference Liu WK, Han W, Lu H, Li S, Cao J (2004) Reproducing kernel element method. Part i: theoretical formulation. Comput Methods Appl Mech Eng 193(12–14):933–951MATH Liu WK, Han W, Lu H, Li S, Cao J (2004) Reproducing kernel element method. Part i: theoretical formulation. Comput Methods Appl Mech Eng 193(12–14):933–951MATH
28.
go back to reference Li S, Lu H, Han W, Liu WK, Simkins DC (2004) Reproducing kernel element method part ii: globally conforming Im/Cn hierarchies. Comput Methods Appl Mech Eng 193(12–14):953–987MATH Li S, Lu H, Han W, Liu WK, Simkins DC (2004) Reproducing kernel element method part ii: globally conforming Im/Cn hierarchies. Comput Methods Appl Mech Eng 193(12–14):953–987MATH
29.
go back to reference Lu H, Li S, Simkins DC Jr, Liu WK, Cao J (2004) Reproducing kernel element method part iii: generalized enrichment and applications. Comput Methods Appl Mech Eng 193(12–14):989–1011MATH Lu H, Li S, Simkins DC Jr, Liu WK, Cao J (2004) Reproducing kernel element method part iii: generalized enrichment and applications. Comput Methods Appl Mech Eng 193(12–14):989–1011MATH
30.
go back to reference Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366MATH Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366MATH
31.
go back to reference Cai S, Mao Z, Wang Z, Yin M, Karniadakis GE (2022) Physics-informed neural networks (pinns) for fluid mechanics: a review. Acta Mech Sin 37:1727–1738MathSciNet Cai S, Mao Z, Wang Z, Yin M, Karniadakis GE (2022) Physics-informed neural networks (pinns) for fluid mechanics: a review. Acta Mech Sin 37:1727–1738MathSciNet
32.
go back to reference Raissi M, Perdikaris P, Karniadakis GE (2021) Physics informed learning machine. Mar. 30. US Patent 10,963,540 Raissi M, Perdikaris P, Karniadakis GE (2021) Physics informed learning machine. Mar. 30. US Patent 10,963,540
34.
go back to reference Jin P, Zhang Z, Zhu A, Tang Y, Karniadakis GE (2020) Sympnets: intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems. Neural Netw 132:166–179MATH Jin P, Zhang Z, Zhu A, Tang Y, Karniadakis GE (2020) Sympnets: intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems. Neural Netw 132:166–179MATH
35.
go back to reference Hernández Q, Badías A, González D, Chinesta F, Cueto E (2021) Structure-preserving neural networks. J Comput Phys 426:109950MathSciNetMATH Hernández Q, Badías A, González D, Chinesta F, Cueto E (2021) Structure-preserving neural networks. J Comput Phys 426:109950MathSciNetMATH
36.
go back to reference Cheng L, Wagner GJ (2022) A representative volume element network (RVE-net) for accelerating RVE analysis, microscale material identification, and defect characterization. Comput Methods Appl Mech Eng 390:114507MathSciNetMATH Cheng L, Wagner GJ (2022) A representative volume element network (RVE-net) for accelerating RVE analysis, microscale material identification, and defect characterization. Comput Methods Appl Mech Eng 390:114507MathSciNetMATH
37.
go back to reference Cuomo S, Di Cola VS, Giampaolo F, Rozza G, Raissi M, Piccialli F (2022) Scientific machine learning through physics-informed neural networks: where we are and what’s next. J Sci Comput 92(3):88MathSciNetMATH Cuomo S, Di Cola VS, Giampaolo F, Rozza G, Raissi M, Piccialli F (2022) Scientific machine learning through physics-informed neural networks: where we are and what’s next. J Sci Comput 92(3):88MathSciNetMATH
38.
go back to reference Zhang L, Cheng L, Li H, Gao J, Yu C, Domel R, Yang Y, Tang S, Liu WK (2021) Hierarchical deep-learning neural networks: finite elements and beyond. Comput Mech 67(1):207–230MathSciNetMATH Zhang L, Cheng L, Li H, Gao J, Yu C, Domel R, Yang Y, Tang S, Liu WK (2021) Hierarchical deep-learning neural networks: finite elements and beyond. Comput Mech 67(1):207–230MathSciNetMATH
39.
go back to reference Zhang L, Lu Y, Tang S, Liu WK (2022) Hidenn-td: reduced-order hierarchical deep learning neural networks. Comput Methods Appl Mech Eng 389:114414MathSciNetMATH Zhang L, Lu Y, Tang S, Liu WK (2022) Hidenn-td: reduced-order hierarchical deep learning neural networks. Comput Methods Appl Mech Eng 389:114414MathSciNetMATH
40.
go back to reference Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Nonnewton Fluid Mech 139(3):153–176MATH Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Nonnewton Fluid Mech 139(3):153–176MATH
41.
go back to reference Chinesta F, Ladeveze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18(4):395–404 Chinesta F, Ladeveze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18(4):395–404
42.
go back to reference Kazemzadeh-Parsi MJ, Ammar A, Duval JL, Chinesta F (2021) Enhanced parametric shape descriptions in PGD-based space separated representations. Adv Model Simul Eng Sci 8(1):1–28 Kazemzadeh-Parsi MJ, Ammar A, Duval JL, Chinesta F (2021) Enhanced parametric shape descriptions in PGD-based space separated representations. Adv Model Simul Eng Sci 8(1):1–28
43.
go back to reference Lu Y, Jones KK, Gan Z, Liu WK (2020) Adaptive hyper reduction for additive manufacturing thermal fluid analysis. Comput Methods Appl Mech Eng 372:113312MathSciNetMATH Lu Y, Jones KK, Gan Z, Liu WK (2020) Adaptive hyper reduction for additive manufacturing thermal fluid analysis. Comput Methods Appl Mech Eng 372:113312MathSciNetMATH
44.
45.
go back to reference Park C, Lu Y, Saha S, Xue T, Guo J, Mojumder S, Apley D, Wagner G, Liu W (2023)Convolution hierarchical deep-learning neural network (c-hidenn) with graphics processing unit (GPU) acceleration. Comput Mech Park C, Lu Y, Saha S, Xue T, Guo J, Mojumder S, Apley D, Wagner G, Liu W (2023)Convolution hierarchical deep-learning neural network (c-hidenn) with graphics processing unit (GPU) acceleration. Comput Mech
46.
47.
go back to reference Belytschko T, Liu WK, Moran B, Elkhodary K (2014) Nonlinear finite elements for continua and structures. Wiley, HobokenMATH Belytschko T, Liu WK, Moran B, Elkhodary K (2014) Nonlinear finite elements for continua and structures. Wiley, HobokenMATH
48.
go back to reference Bessa M, Foster J, Belytschko T, Liu WK (2014) A meshfree unification: reproducing kernel peridynamics. Comput Mech 53(6):1251–1264MathSciNetMATH Bessa M, Foster J, Belytschko T, Liu WK (2014) A meshfree unification: reproducing kernel peridynamics. Comput Mech 53(6):1251–1264MathSciNetMATH
49.
go back to reference Li S, Liu WK (2007) Meshfree particle methods. Springer, BerlinMATH Li S, Liu WK (2007) Meshfree particle methods. Springer, BerlinMATH
50.
go back to reference Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, North Chelmsford Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, North Chelmsford
51.
go back to reference Wendland H (1999) Meshless Galerkin methods using radial basis functions. Math Comput 68(228):1521–1531MathSciNetMATH Wendland H (1999) Meshless Galerkin methods using radial basis functions. Math Comput 68(228):1521–1531MathSciNetMATH
52.
go back to reference Wang J, Liu G (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Methods Eng 54(11):1623–1648MATH Wang J, Liu G (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Methods Eng 54(11):1623–1648MATH
53.
go back to reference Tian R (2013) Extra-dof-free and linearly independent enrichments in GFEM. Comput Methods Appl Mech Eng 266:1–22MATH Tian R (2013) Extra-dof-free and linearly independent enrichments in GFEM. Comput Methods Appl Mech Eng 266:1–22MATH
54.
go back to reference Petersen P, Raslan M, Voigtlaender F (2021) Topological properties of the set of functions generated by neural networks of fixed size. Found Comput Math 21:375–444MathSciNetMATH Petersen P, Raslan M, Voigtlaender F (2021) Topological properties of the set of functions generated by neural networks of fixed size. Found Comput Math 21:375–444MathSciNetMATH
55.
go back to reference Bartlett PL, Ben-David S (2002) Hardness results for neural network approximation problems. Theor Comput Sci 284(1):53–66MathSciNetMATH Bartlett PL, Ben-David S (2002) Hardness results for neural network approximation problems. Theor Comput Sci 284(1):53–66MathSciNetMATH
57.
go back to reference Judd JS (1987) Learning in networks is hard. In: Proceedings of 1st international conference on neural networks, San Diego, California, IEEE Judd JS (1987) Learning in networks is hard. In: Proceedings of 1st international conference on neural networks, San Diego, California, IEEE
58.
go back to reference Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500 Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500
59.
go back to reference Sidiropoulos ND, De Lathauwer L, Fu X, Huang K, Papalexakis EE, Faloutsos C (2017) Tensor decomposition for signal processing and machine learning. IEEE Trans Signal Process 65(13):3551–3582MathSciNetMATH Sidiropoulos ND, De Lathauwer L, Fu X, Huang K, Papalexakis EE, Faloutsos C (2017) Tensor decomposition for signal processing and machine learning. IEEE Trans Signal Process 65(13):3551–3582MathSciNetMATH
60.
go back to reference Papalexakis EE, Faloutsos C, Sidiropoulos ND (2012) Parcube: sparse parallelizable tensor decompositions. In: Machine learning and knowledge discovery in databases: European conference, ECML PKDD 2012, Bristol, UK, September 24–28, 2012. Proceedings, Part I 23, Springer, pp 521–536 Papalexakis EE, Faloutsos C, Sidiropoulos ND (2012) Parcube: sparse parallelizable tensor decompositions. In: Machine learning and knowledge discovery in databases: European conference, ECML PKDD 2012, Bristol, UK, September 24–28, 2012. Proceedings, Part I 23, Springer, pp 521–536
61.
go back to reference Song J (2001) Optimal representation of high-dimensional functions and manifolds in low-dimensional visual space (in Chinese). Chin Sci Bull 46(12):977–984 Song J (2001) Optimal representation of high-dimensional functions and manifolds in low-dimensional visual space (in Chinese). Chin Sci Bull 46(12):977–984
62.
go back to reference Lu Y, Blal N, Gravouil A (2018) Adaptive sparse grid based HOPGD: toward a nonintrusive strategy for constructing space–time welding computational vademecum. Int J Numer Methods Eng 114(13):1438–1461MathSciNet Lu Y, Blal N, Gravouil A (2018) Adaptive sparse grid based HOPGD: toward a nonintrusive strategy for constructing space–time welding computational vademecum. Int J Numer Methods Eng 114(13):1438–1461MathSciNet
63.
go back to reference Lu Y, Blal N, Gravouil A (2018) Multi-parametric space–time computational vademecum for parametric studies: application to real time welding simulations. Finite Elem Anal Des 139:62–72MathSciNetMATH Lu Y, Blal N, Gravouil A (2018) Multi-parametric space–time computational vademecum for parametric studies: application to real time welding simulations. Finite Elem Anal Des 139:62–72MathSciNetMATH
64.
go back to reference Lu Y, Blal N, Gravouil A (2019) Datadriven HOPGD based computational vademecum for welding parameter identification. Comput Mech 64(1):47–62MathSciNetMATH Lu Y, Blal N, Gravouil A (2019) Datadriven HOPGD based computational vademecum for welding parameter identification. Comput Mech 64(1):47–62MathSciNetMATH
65.
go back to reference Badrou A, Bel-Brunon A, Hamila N, Tardif N, Gravouil A (2020) Reduced order modeling of an active multi-curve guidewire for endovascular surgery. Comput Methods Biomech Biomed Eng 23(sup1):S23–S24 Badrou A, Bel-Brunon A, Hamila N, Tardif N, Gravouil A (2020) Reduced order modeling of an active multi-curve guidewire for endovascular surgery. Comput Methods Biomech Biomed Eng 23(sup1):S23–S24
66.
go back to reference Blal N, Gravouil A (2019) Non-intrusive data learning based computational homogenization of materials with uncertainties. Comput Mech 64(3):807–828MathSciNetMATH Blal N, Gravouil A (2019) Non-intrusive data learning based computational homogenization of materials with uncertainties. Comput Mech 64(3):807–828MathSciNetMATH
67.
go back to reference Rozza G, Huynh DB, Patera AT (2008) Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch Comput Methods Eng 15(3):229MathSciNetMATH Rozza G, Huynh DB, Patera AT (2008) Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch Comput Methods Eng 15(3):229MathSciNetMATH
68.
go back to reference Rozza G, Veroy K (2007) On the stability of the reduced basis method for stokes equations in parametrized domains. Comput Methods Appl Mech Eng 196(7):1244–1260MathSciNetMATH Rozza G, Veroy K (2007) On the stability of the reduced basis method for stokes equations in parametrized domains. Comput Methods Appl Mech Eng 196(7):1244–1260MathSciNetMATH
69.
go back to reference Sirovich L (1987) Turbulence and the dynamics of coherent structures. I. Coherent structures. Q Appl Math 45(3):561–571MathSciNetMATH Sirovich L (1987) Turbulence and the dynamics of coherent structures. I. Coherent structures. Q Appl Math 45(3):561–571MathSciNetMATH
70.
go back to reference Amsallem D, Farhat C (2008) Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J 46(7):1803–1813 Amsallem D, Farhat C (2008) Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J 46(7):1803–1813
71.
go back to reference Kerfriden P, Goury O, Rabczuk T, Bordas SP (2013) A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics. Comput Methods Appl Mech Eng 256:169–188MathSciNetMATH Kerfriden P, Goury O, Rabczuk T, Bordas SP (2013) A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics. Comput Methods Appl Mech Eng 256:169–188MathSciNetMATH
72.
go back to reference Amsallem D, Zahr M, Choi Y, Farhat C (2015) Design optimization using hyper-reduced-order models. Struct Multidiscip Optim 51(4):919–940MathSciNet Amsallem D, Zahr M, Choi Y, Farhat C (2015) Design optimization using hyper-reduced-order models. Struct Multidiscip Optim 51(4):919–940MathSciNet
73.
go back to reference Ryckelynck D (2009) Hyper-reduction of mechanical models involving internal variables. Int J Numer Methods Eng 77(1):75–89MathSciNetMATH Ryckelynck D (2009) Hyper-reduction of mechanical models involving internal variables. Int J Numer Methods Eng 77(1):75–89MathSciNetMATH
74.
go back to reference Scanff R, Néron D, Ladevèze P, Barabinot P, Cugnon F, Delsemme J-P (2022) Weakly-invasive LATIN-PGD for solving time-dependent non-linear parametrized problems in solid mechanics. Comput Methods Appl Mech Eng 396:114999MathSciNetMATH Scanff R, Néron D, Ladevèze P, Barabinot P, Cugnon F, Delsemme J-P (2022) Weakly-invasive LATIN-PGD for solving time-dependent non-linear parametrized problems in solid mechanics. Comput Methods Appl Mech Eng 396:114999MathSciNetMATH
75.
go back to reference Falcó A, Hackbusch W, Nouy A (2019) On the Dirac–Frenkel variational principle on tensor banach spaces. Found Comput Math 19:159–204 Falcó A, Hackbusch W, Nouy A (2019) On the Dirac–Frenkel variational principle on tensor banach spaces. Found Comput Math 19:159–204
76.
go back to reference Hackbusch W (2012) Tensor spaces and numerical tensor calculus, vol 42. Springer, BerlinMATH Hackbusch W (2012) Tensor spaces and numerical tensor calculus, vol 42. Springer, BerlinMATH
77.
go back to reference Schaback R, Wendland H (2001) Characterization and construction of radial basis functions. In: Multivariate approximation and applications, pp 1–24 Schaback R, Wendland H (2001) Characterization and construction of radial basis functions. In: Multivariate approximation and applications, pp 1–24
Metadata
Title
Convolution Hierarchical Deep-learning Neural Networks (C-HiDeNN): finite elements, isogeometric analysis, tensor decomposition, and beyond
Authors
Ye Lu
Hengyang Li
Lei Zhang
Chanwook Park
Satyajit Mojumder
Stefan Knapik
Zhongsheng Sang
Shaoqiang Tang
Daniel W. Apley
Gregory J. Wagner
Wing Kam Liu
Publication date
16-05-2023
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 2/2023
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-023-02336-5

Other articles of this Issue 2/2023

Computational Mechanics 2/2023 Go to the issue