Skip to main content
Top
Published in: Neural Computing and Applications 12/2019

01-08-2019 | Original Article

Convolutional neural network for spectral–spatial classification of hyperspectral images

Authors: Hongmin Gao, Yao Yang, Chenming Li, Xiaoke Zhang, Jia Zhao, Dan Yao

Published in: Neural Computing and Applications | Issue 12/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hyperspectral images (HSIs) have great potential in military reconnaissance, land use, marine monitoring and many other fields. In recent years, the convolutional neural network (CNN) has been successfully used to classify hyperspectral data and achieved remarkable performance. However, the limited labeled samples of HSI lead to the small sample size problem, which remains the major challenge for CNN-based HSI classification. Besides, most CNN models have large number of parameters needed to be learned, which cause high computational cost. To address the aforementioned two issues, a novel CNN-based HSI classification method is proposed. The proposed classification method has several distinguishing characteristics. First, the proposed method can robustly extract spectral and spatial features of the HSI simultaneously. Second, in the proposed CNN architecture, all convolution layers are 1 × 1 convolution layer except the first one, which can greatly reduce the number of network parameters, thus accelerating the training and testing process. Third, a small convolution and feature reuse (SC-FR) module is developed. The SC-FR module is composed of two composite layers and each composite layer consists of two cascaded 1 × 1 convolution layers. Through cross-layer connecting, the input and output features of each composite layer are concatenated and passed to the next convolution layer, thus achieving feature reuse mechanism. Cross-layer connection increases information flow and the utilization rate of middle-level features, which enhances the generalization performance of CNN effectively. Experimental results on three benchmark HSIs demonstrate the competitive superiority of the proposed method over several state-of-the-art HSI classification methods, especially when training samples are limited.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gevaert CM, Suomalainen J, Tang J, Kooistra L (2015) Generation of spectral–temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications. IEEE J Sel Top Appl Earth Obs Remote Sens 8(6):3140–3146CrossRef Gevaert CM, Suomalainen J, Tang J, Kooistra L (2015) Generation of spectral–temporal response surfaces by combining multispectral satellite and hyperspectral UAV imagery for precision agriculture applications. IEEE J Sel Top Appl Earth Obs Remote Sens 8(6):3140–3146CrossRef
2.
go back to reference Yuen PW, Richardson M (2013) An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition. J Photogr Sci 58(5):241–253 Yuen PW, Richardson M (2013) An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition. J Photogr Sci 58(5):241–253
3.
go back to reference Zhang CY, Cheng HF, Chen ZH, Zheng WW (2008) The development of hyperspectral remote sensing and its threatening to military equipments. Electro-Opt Technol Appl 23(1):10–12 Zhang CY, Cheng HF, Chen ZH, Zheng WW (2008) The development of hyperspectral remote sensing and its threatening to military equipments. Electro-Opt Technol Appl 23(1):10–12
4.
go back to reference Sandidge JC, Holyer RJ (1998) Coastal bathymetry from hyperspectral observations of water radiance. Remote Sens Environ 65(3):341–352CrossRef Sandidge JC, Holyer RJ (1998) Coastal bathymetry from hyperspectral observations of water radiance. Remote Sens Environ 65(3):341–352CrossRef
5.
go back to reference Gao HM, Yang Y, Li CM, Zhou H, Qu XY (2018) Joint alternate small convolution and feature reuse for hyperspectral image classification. ISPRS Int J Geo-Inf 7(9):349CrossRef Gao HM, Yang Y, Li CM, Zhou H, Qu XY (2018) Joint alternate small convolution and feature reuse for hyperspectral image classification. ISPRS Int J Geo-Inf 7(9):349CrossRef
6.
go back to reference Chen Y, Nasrabadi NM, Tran TD (2013) Hyperspectral image classification via kernel sparse representation. IEEE Trans Geosci Remote Sens 51(1):217–231CrossRef Chen Y, Nasrabadi NM, Tran TD (2013) Hyperspectral image classification via kernel sparse representation. IEEE Trans Geosci Remote Sens 51(1):217–231CrossRef
7.
go back to reference Qian Y, Ye M, Zhou J (2013) Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features. IEEE Trans Geosci Remote Sens 51(4):2276–2291CrossRef Qian Y, Ye M, Zhou J (2013) Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features. IEEE Trans Geosci Remote Sens 51(4):2276–2291CrossRef
8.
go back to reference Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790CrossRef Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790CrossRef
9.
go back to reference Li J, Du Q, Li W et al (2015) Optimizing extreme learning machine for hyperspectral image classification. J Appl Remote Sens 9(1):097296CrossRef Li J, Du Q, Li W et al (2015) Optimizing extreme learning machine for hyperspectral image classification. J Appl Remote Sens 9(1):097296CrossRef
10.
go back to reference Zhang X, Song Q, Gao Z et al (2017) Spectral–spatial feature learning using cluster-based group sparse coding for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 9(9):4142–4159CrossRef Zhang X, Song Q, Gao Z et al (2017) Spectral–spatial feature learning using cluster-based group sparse coding for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 9(9):4142–4159CrossRef
11.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: International conference on neural information processing systems. Curran Associates Inc., pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: International conference on neural information processing systems. Curran Associates Inc., pp 1097–1105
12.
go back to reference Mou L, Ghamisi P, Zhu XX (2017) Deep recurrent neural networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 55(7):3639–3655CrossRef Mou L, Ghamisi P, Zhu XX (2017) Deep recurrent neural networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 55(7):3639–3655CrossRef
13.
go back to reference Zhang ZW, Sun Z, Liu JQ, Chen JW, Huo Z, Zhang X (2016) Deep recurrent convolutional neural network: improving performance for speech recognition. arXiv:1611.07174v2 Zhang ZW, Sun Z, Liu JQ, Chen JW, Huo Z, Zhang X (2016) Deep recurrent convolutional neural network: improving performance for speech recognition. arXiv:​1611.​07174v2
16.
go back to reference Yu SQ, Jia S, Xu CY (2016) Convolutional neural networks for hyperspectral image classification. Neurocomputing 219:88–98CrossRef Yu SQ, Jia S, Xu CY (2016) Convolutional neural networks for hyperspectral image classification. Neurocomputing 219:88–98CrossRef
17.
go back to reference Ren SQ, He KM, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. In: International conference on neural information processing systems. MIT Press, pp 91–99 Ren SQ, He KM, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. In: International conference on neural information processing systems. MIT Press, pp 91–99
18.
go back to reference Makantasis K, Karantzalos K, Doulamis A, et al (2015) Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: Geoscience and remote sensing symposium (IGARSS), 2015 IEEE international. IEEE Makantasis K, Karantzalos K, Doulamis A, et al (2015) Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: Geoscience and remote sensing symposium (IGARSS), 2015 IEEE international. IEEE
19.
go back to reference Gao HM, Yang Y, Lei S, Li CM, Zhou H, Qu XY (2019) Multi-branch fusion network for hyperspectral image classification. Knowl-Based Syst 2019(167):11–25CrossRef Gao HM, Yang Y, Lei S, Li CM, Zhou H, Qu XY (2019) Multi-branch fusion network for hyperspectral image classification. Knowl-Based Syst 2019(167):11–25CrossRef
20.
go back to reference Chen YS, Zhu L, Ghamisi P, Jia XP, Li GY, Tang L (2017) Hyperspectral images classification with gabor filtering and convolutional neural network. IEEE Geosci Remote Sens Lett 14(12):2355–2359CrossRef Chen YS, Zhu L, Ghamisi P, Jia XP, Li GY, Tang L (2017) Hyperspectral images classification with gabor filtering and convolutional neural network. IEEE Geosci Remote Sens Lett 14(12):2355–2359CrossRef
21.
go back to reference Liang H, Li Q (2016) Hyperspectral imagery classification using sparse representations of convolutional neural network features. Remote Sens 8(2):99CrossRef Liang H, Li Q (2016) Hyperspectral imagery classification using sparse representations of convolutional neural network features. Remote Sens 8(2):99CrossRef
22.
go back to reference Lee H, Kwon H (2017) Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans Image Process 26(10):4843–4855MathSciNetCrossRef Lee H, Kwon H (2017) Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans Image Process 26(10):4843–4855MathSciNetCrossRef
24.
go back to reference Cao X, Zhou F, Xu L et al (2018) Hyperspectral image classification with Markov random fields and a convolutional neural network. IEEE Trans Image Process 27(5):2354–2367MathSciNetCrossRef Cao X, Zhou F, Xu L et al (2018) Hyperspectral image classification with Markov random fields and a convolutional neural network. IEEE Trans Image Process 27(5):2354–2367MathSciNetCrossRef
25.
go back to reference Zhong Z, Li J, Luo Z et al (2018) Spectral–spatial residual network for hyperspectral image classification: a 3-D deep learning framework. IEEE Trans Geosci Remote Sens 56(2):847–858CrossRef Zhong Z, Li J, Luo Z et al (2018) Spectral–spatial residual network for hyperspectral image classification: a 3-D deep learning framework. IEEE Trans Geosci Remote Sens 56(2):847–858CrossRef
26.
go back to reference Song W, Li S, Fang L et al (2018) Hyperspectral image classification with deep feature fusion network. IEEE Trans Geosci Remote Sens 56(6):3173–3184CrossRef Song W, Li S, Fang L et al (2018) Hyperspectral image classification with deep feature fusion network. IEEE Trans Geosci Remote Sens 56(6):3173–3184CrossRef
27.
go back to reference Ma Xiaorui Fu, Anyan Wang Jie et al (2018) Hyperspectral image classification based on deep deconvolution network with skip architecture. IEEE Trans Geosci Remote Sens 56(8):4781–4791CrossRef Ma Xiaorui Fu, Anyan Wang Jie et al (2018) Hyperspectral image classification based on deep deconvolution network with skip architecture. IEEE Trans Geosci Remote Sens 56(8):4781–4791CrossRef
28.
go back to reference Fang B, Li Y, Zhang HK et al (2019) Hyperspectral images classification based on dense convolutional networks with spectral-wise attention mechanism. Remote Sens 11(2):159CrossRef Fang B, Li Y, Zhang HK et al (2019) Hyperspectral images classification based on dense convolutional networks with spectral-wise attention mechanism. Remote Sens 11(2):159CrossRef
29.
go back to reference He KM, Zhang XY, Ren SQ, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. arXiv:1502.01852v1 He KM, Zhang XY, Ren SQ, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. arXiv:​1502.​01852v1
30.
go back to reference Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: International conference on international conference on machine learning. Omnipress, pp 807–814 Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: International conference on international conference on machine learning. Omnipress, pp 807–814
31.
32.
go back to reference Fang L, Liu G, Li S et al (2019) Hyperspectral image classification with squeeze multibias network. IEEE Trans Geosci Remote Sens 57(3):1291–1301CrossRef Fang L, Liu G, Li S et al (2019) Hyperspectral image classification with squeeze multibias network. IEEE Trans Geosci Remote Sens 57(3):1291–1301CrossRef
33.
go back to reference Shu L, Mcisaac K, Osinski GR (2018) Hyperspectral image classification with stacking spectral patches and convolutional neural networks. IEEE Trans Geosci Remote Sens 56(10):5975–5984CrossRef Shu L, Mcisaac K, Osinski GR (2018) Hyperspectral image classification with stacking spectral patches and convolutional neural networks. IEEE Trans Geosci Remote Sens 56(10):5975–5984CrossRef
34.
go back to reference Zhi L, Yu XC, Li B et al (2019) A dense convolutional neural network for hyperspectral image classification. Remote Sens Lett 10(1):59–66CrossRef Zhi L, Yu XC, Li B et al (2019) A dense convolutional neural network for hyperspectral image classification. Remote Sens Lett 10(1):59–66CrossRef
Metadata
Title
Convolutional neural network for spectral–spatial classification of hyperspectral images
Authors
Hongmin Gao
Yao Yang
Chenming Li
Xiaoke Zhang
Jia Zhao
Dan Yao
Publication date
01-08-2019
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 12/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-019-04371-x

Other articles of this Issue 12/2019

Neural Computing and Applications 12/2019 Go to the issue

Machine Learning - Applications & Techniques in Cyber Intelligence

DEA efficiency prediction based on IG–SVM

Machine Learning - Applications & Techniques in Cyber Intelligence

Research on prediction model of geotechnical parameters based on BP neural network

Premium Partner