Skip to main content
Top
Published in: Autonomous Robots 2/2018

26-01-2017

Cooperative multi-robot belief space planning for autonomous navigation in unknown environments

Author: Vadim Indelman

Published in: Autonomous Robots | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We investigate the problem of cooperative multi-robot planning in unknown environments, which is important in numerous applications in robotics. The research community has been actively developing belief space planning approaches that account for the different sources of uncertainty within planning, recently also considering uncertainty in the environment observed by planning time. We further advance the state of the art by reasoning about future observations of environments that are unknown at planning time. The key idea is to incorporate within the belief indirect multi-robot constraints that correspond to these future observations. Such a formulation facilitates a framework for active collaborative state estimation while operating in unknown environments. In particular, it can be used to identify best robot actions or trajectories among given candidates generated by existing motion planning approaches, or to refine nominal trajectories into locally optimal paths using direct trajectory optimization techniques. We demonstrate our approach in a multi-robot autonomous navigation scenario and consider its applicability for autonomous navigation in unknown obstacle-free and obstacle-populated environments. Results indicate that modeling future multi-robot interaction within the belief allows to determine robot actions (paths) that yield significantly improved estimation accuracy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Optimality here refers to choosing the best actions from the given set of candidate paths.
 
Literature
go back to reference Agha-Mohammadi, A.-A., Chakravorty, S., & Amato, N. M. (2014). Firm: Sampling-based feedback motion planning under motion uncertainty and imperfect measurements. The International Journal of Robotics Research., 33(2), 268–304.CrossRef Agha-Mohammadi, A.-A., Chakravorty, S., & Amato, N. M. (2014). Firm: Sampling-based feedback motion planning under motion uncertainty and imperfect measurements. The International Journal of Robotics Research., 33(2), 268–304.CrossRef
go back to reference Amato, C., Konidaris, G. D., Cruz, G., Maynor, C. A., How, J. P., & Kaelbling, L. P. (2014). Planning for decentralized control of multiple robots under uncertainty. arXiv preprint arXiv:1402.2871. Amato, C., Konidaris, G. D., Cruz, G., Maynor, C. A., How, J. P., & Kaelbling, L. P. (2014). Planning for decentralized control of multiple robots under uncertainty. arXiv preprint arXiv:​1402.​2871.
go back to reference Atanasov, N., Le Ny, J., Daniilidis, K., & Pappas, G. J. (2015). Decentralized active information acquisition: Theory and application to multi-robot slam. In IEEE international conference on robotics and automation (ICRA). Atanasov, N., Le Ny, J., Daniilidis, K., & Pappas, G. J. (2015). Decentralized active information acquisition: Theory and application to multi-robot slam. In IEEE international conference on robotics and automation (ICRA).
go back to reference Bry, A., & Roy, N. (2011). Rapidly-exploring random belief trees for motion planning under uncertainty. In IEEE international conference on robotics and automation (ICRA), pp. 723–730. Bry, A., & Roy, N. (2011). Rapidly-exploring random belief trees for motion planning under uncertainty. In IEEE international conference on robotics and automation (ICRA), pp. 723–730.
go back to reference Burgard, W., Moors, M., Stachniss, C., & Schneider, F. (2005). Coordinated multi-robot exploration. IEEE Transactions on Robotics., 21(3), 376–386.CrossRef Burgard, W., Moors, M., Stachniss, C., & Schneider, F. (2005). Coordinated multi-robot exploration. IEEE Transactions on Robotics., 21(3), 376–386.CrossRef
go back to reference Carlone, L., Kaouk Ng, M., Du, J., Bona, B., & Indri, M. (2010). Rao-blackwellized particle filters multi robot SLAM with unknown initial correspondences and limited communication. In IEEE international conference on robotics and automation (ICRA), pp. 243–249. doi:10.1109/ROBOT.2010.5509307. Carlone, L., Kaouk Ng, M., Du, J., Bona, B., & Indri, M. (2010). Rao-blackwellized particle filters multi robot SLAM with unknown initial correspondences and limited communication. In IEEE international conference on robotics and automation (ICRA), pp. 243–249. doi:10.​1109/​ROBOT.​2010.​5509307.
go back to reference Chaves, S. M., Kim, A., & Eustice, R. M. (2014). Opportunistic sampling-based planning for active visual slam. In IEEE/RSJ interantional conference on intelligent robots and systems (IROS), IEEE, pp. 3073–3080. Chaves, S. M., Kim, A., & Eustice, R. M. (2014). Opportunistic sampling-based planning for active visual slam. In IEEE/RSJ interantional conference on intelligent robots and systems (IROS), IEEE, pp. 3073–3080.
go back to reference Dellaert, F. (September 2012). Factor graphs and GTSAM: A hands-on introduction. Technical Report GT-RIM-CP&R-2012-002, Georgia Institute of Technology. Dellaert, F. (September 2012). Factor graphs and GTSAM: A hands-on introduction. Technical Report GT-RIM-CP&R-2012-002, Georgia Institute of Technology.
go back to reference Eustice, R. M., Singh, H., & Leonard, J. J. (2006). Exactly sparse delayed-state filters for view-based SLAM. IEEE Transactions on Robotics, 22(6), 1100–1114.CrossRef Eustice, R. M., Singh, H., & Leonard, J. J. (2006). Exactly sparse delayed-state filters for view-based SLAM. IEEE Transactions on Robotics, 22(6), 1100–1114.CrossRef
go back to reference Hartley, R. I., & Zisserman, A. (2004). Multiple view geometry in computer vision (2nd ed.). Cambridge: Cambridge University Press.CrossRefMATH Hartley, R. I., & Zisserman, A. (2004). Multiple view geometry in computer vision (2nd ed.). Cambridge: Cambridge University Press.CrossRefMATH
go back to reference He, R., Prentice, S., & Roy, N. (2008). Planning in information space for a quadrotor helicopter in a gps-denied environment. In IEEE international conference on robotics and automation (ICRA), pp. 1814–1820. He, R., Prentice, S., & Roy, N. (2008). Planning in information space for a quadrotor helicopter in a gps-denied environment. In IEEE international conference on robotics and automation (ICRA), pp. 1814–1820.
go back to reference Hollinger, G. A., & Sukhatme, G. S. (2014). Sampling-based robotic information gathering algorithms. International Journal of Robotics Research, 33(9), 1271–1287.CrossRef Hollinger, G. A., & Sukhatme, G. S. (2014). Sampling-based robotic information gathering algorithms. International Journal of Robotics Research, 33(9), 1271–1287.CrossRef
go back to reference Indelman, V. (September 2015a). Towards multi-robot active collaborative state estimation via belief space planning. In IEEE/RSJ international conference on intelligent robots and systems (IROS). Indelman, V. (September 2015a). Towards multi-robot active collaborative state estimation via belief space planning. In IEEE/RSJ international conference on intelligent robots and systems (IROS).
go back to reference Indelman, V. (September 2015b). Towards cooperative multi-robot belief space planning in unknown environments. In Proceedings of the international symposium of robotics research (ISRR). Indelman, V. (September 2015b). Towards cooperative multi-robot belief space planning in unknown environments. In Proceedings of the international symposium of robotics research (ISRR).
go back to reference Indelman, V., & Dellaert, F. (2015). Incremental light bundle adjustment: Probabilistic analysis and application to robotic navigation. In New development in robot vision, cognitive systems monographs (Vol. 23, pp. 111–136). Springer: Berlin Heidelberg. ISBN 978-3-662-43858-9. doi:10.1007/978-3-662-43859-6_7. Indelman, V., & Dellaert, F. (2015). Incremental light bundle adjustment: Probabilistic analysis and application to robotic navigation. In New development in robot vision, cognitive systems monographs (Vol. 23, pp. 111–136). Springer: Berlin Heidelberg. ISBN 978-3-662-43858-9. doi:10.​1007/​978-3-662-43859-6_​7.
go back to reference Indelman, V., Gurfil, P., Rivlin, E., & Rotstein, H. (2012). Distributed vision-aided cooperative localization and navigation based on three-view geometry. Robotics and Autonomous Systems, 60(6), 822–840.CrossRef Indelman, V., Gurfil, P., Rivlin, E., & Rotstein, H. (2012). Distributed vision-aided cooperative localization and navigation based on three-view geometry. Robotics and Autonomous Systems, 60(6), 822–840.CrossRef
go back to reference Indelman, V., Carlone, L., & Dellaert, F. (December 2013). Towards planning in generalized belief space. In The 16th international symposium on robotics research, Singapore. Indelman, V., Carlone, L., & Dellaert, F. (December 2013). Towards planning in generalized belief space. In The 16th international symposium on robotics research, Singapore.
go back to reference Indelman, V., Nelson, E., Michael, N., & Dellaert, F. (2014). Multi-robot pose graph localization and data association from unknown initial relative poses via expectation maximization. In IEEE international conference on robotics and automation (ICRA). Indelman, V., Nelson, E., Michael, N., & Dellaert, F. (2014). Multi-robot pose graph localization and data association from unknown initial relative poses via expectation maximization. In IEEE international conference on robotics and automation (ICRA).
go back to reference Indelman, V., Carlone, L., & Dellaert, F. (2015a). Planning in the continuous domain: A generalized belief space approach for autonomous navigation in unknown environments. Intnernational Journal of Robotics Research, 34(7), 849–882.CrossRef Indelman, V., Carlone, L., & Dellaert, F. (2015a). Planning in the continuous domain: A generalized belief space approach for autonomous navigation in unknown environments. Intnernational Journal of Robotics Research, 34(7), 849–882.CrossRef
go back to reference Indelman, V., Roberts, R., & Dellaert, F. (2015b). Incremental light bundle adjustment for structure from motion and robotics. Robotics and Autonomous Systems, 70, 63–82.CrossRef Indelman, V., Roberts, R., & Dellaert, F. (2015b). Incremental light bundle adjustment for structure from motion and robotics. Robotics and Autonomous Systems, 70, 63–82.CrossRef
go back to reference Indelman, V., Nelson, E., Dong, J., Michael, N., & Dellaert, F. (2016). Incremental distributed inference from arbitrary poses and unknown data association: Using collaborating robots to establish a common reference. IEEE Control Systems Magazine (CSM), Special Issue on Distributed Control and Estimation for Robotic Vehicle Networks, 36(2), 41–74.MathSciNet Indelman, V., Nelson, E., Dong, J., Michael, N., & Dellaert, F. (2016). Incremental distributed inference from arbitrary poses and unknown data association: Using collaborating robots to establish a common reference. IEEE Control Systems Magazine (CSM), Special Issue on Distributed Control and Estimation for Robotic Vehicle Networks, 36(2), 41–74.MathSciNet
go back to reference Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., & Dellaert, F. (2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. International Journal of Robotics Research, 31, 217–236.CrossRef Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., & Dellaert, F. (2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. International Journal of Robotics Research, 31, 217–236.CrossRef
go back to reference Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. International Journal of Robotics Research, 30(7), 846–894.CrossRefMATH Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. International Journal of Robotics Research, 30(7), 846–894.CrossRefMATH
go back to reference Kavraki, L. E., Svestka, P., Latombe, J.-C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.CrossRef Kavraki, L. E., Svestka, P., Latombe, J.-C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.CrossRef
go back to reference Kim, A., & Eustice, R. M. (2014). Active visual slam for robotic area coverage: Theory and experiment. International Journal of Robotics Research., 34(4–5), 457–475. Kim, A., & Eustice, R. M. (2014). Active visual slam for robotic area coverage: Theory and experiment. International Journal of Robotics Research., 34(4–5), 457–475.
go back to reference Koenig, Sven, & Likhachev, Maxim. (2005). Fast replanning for navigation in unknown terrain. IEEE Transactions on Robotics, 21(3), 354–363.CrossRef Koenig, Sven, & Likhachev, Maxim. (2005). Fast replanning for navigation in unknown terrain. IEEE Transactions on Robotics, 21(3), 354–363.CrossRef
go back to reference Kurniawati, H., Hsu, D., & Lee, W. S. (2008). Sarsop: Efficient point-based pomdp planning by approximating optimally reachable belief spaces. In Robotics: Science and systems (RSS) (Vol. 2008). Kurniawati, H., Hsu, D., & Lee, W. S. (2008). Sarsop: Efficient point-based pomdp planning by approximating optimally reachable belief spaces. In Robotics: Science and systems (RSS) (Vol. 2008).
go back to reference LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. International Journal of Robotics Research, 20(5), 378–400.CrossRef LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. International Journal of Robotics Research, 20(5), 378–400.CrossRef
go back to reference Levine, D., Luders, B., & How, J. P. (2013). Information-theoretic motion planning for constrained sensor networks. Journal of Aerospace Information Systems, 10(10), 476–496.CrossRef Levine, D., Luders, B., & How, J. P. (2013). Information-theoretic motion planning for constrained sensor networks. Journal of Aerospace Information Systems, 10(10), 476–496.CrossRef
go back to reference Lu, F., & Milios, E. (Apr 1997). Globally consistent range scan alignment for environment mapping. Autonomous robots, pp. 333–349. Lu, F., & Milios, E. (Apr 1997). Globally consistent range scan alignment for environment mapping. Autonomous robots, pp. 333–349.
go back to reference Papadimitriou, C., & Tsitsiklis, J. (1987). The complexity of markov decision processes. Mathematics of Operations Research, 12(3), 441–450.MathSciNetCrossRefMATH Papadimitriou, C., & Tsitsiklis, J. (1987). The complexity of markov decision processes. Mathematics of Operations Research, 12(3), 441–450.MathSciNetCrossRefMATH
go back to reference Pathak, S., Thomas, A., Feniger, A., & Indelman, V. (2016a). Robust active perception via data-association aware belief space planning. arXiv preprint: arXiv.1606.05124. Pathak, S., Thomas, A., Feniger, A., & Indelman, V. (2016a). Robust active perception via data-association aware belief space planning. arXiv preprint: arXiv.​1606.​05124.
go back to reference Pathak, S., Thomas, A., Feniger, A., & Indelman, V. (September 2016b). Da-bsp: Towards data association aware belief space planning for robust active perception. In Europian conference on AI (ECAI). Accepted. Pathak, S., Thomas, A., Feniger, A., & Indelman, V. (September 2016b). Da-bsp: Towards data association aware belief space planning for robust active perception. In Europian conference on AI (ECAI). Accepted.
go back to reference Patil, S., Kahn, G., Laskey, M., Schulman, J., Goldberg, K., & Abbeel, P. (2014). Scaling up gaussian belief space planning through covariance-free trajectory optimization and automatic differentiation. In International workshop on the algorithmic foundations of robotics. Patil, S., Kahn, G., Laskey, M., Schulman, J., Goldberg, K., & Abbeel, P. (2014). Scaling up gaussian belief space planning through covariance-free trajectory optimization and automatic differentiation. In International workshop on the algorithmic foundations of robotics.
go back to reference Pineau, J., Gordon, G. J., & Thrun, S. (2006). Anytime point-based approximations for large pomdps. Journal of Artificial Intelligence Research, 27, 335–380.MATH Pineau, J., Gordon, G. J., & Thrun, S. (2006). Anytime point-based approximations for large pomdps. Journal of Artificial Intelligence Research, 27, 335–380.MATH
go back to reference Platt, R., Tedrake, R., Kaelbling, L. P., & Lozano-Pérez, T. (2010). Belief space planning assuming maximum likelihood observations. Robotics: science and systems (RSS) (pp. 587–593). Spain: Zaragoza. Platt, R., Tedrake, R., Kaelbling, L. P., & Lozano-Pérez, T. (2010). Belief space planning assuming maximum likelihood observations. Robotics: science and systems (RSS) (pp. 587–593). Spain: Zaragoza.
go back to reference Prentice, S., & Roy, N. (2009). The belief roadmap: Efficient planning in belief space by factoring the covariance. International Journal of Robotics Research., 28(11–12), 1448–1465.CrossRef Prentice, S., & Roy, N. (2009). The belief roadmap: Efficient planning in belief space by factoring the covariance. International Journal of Robotics Research., 28(11–12), 1448–1465.CrossRef
go back to reference Regev, T., & Indelman, V. (2016). Multi-robot decentralized belief space planning in unknown environments via efficient re-evaluation of impacted paths. In IEEE/RSJ international conference on intelligent robots and systems (IROS), accepted. Regev, T., & Indelman, V. (2016). Multi-robot decentralized belief space planning in unknown environments via efficient re-evaluation of impacted paths. In IEEE/RSJ international conference on intelligent robots and systems (IROS), accepted.
go back to reference Ross, Stéphane, Pineau, Joelle, Paquet, Sébastien, & Chaib-Draa, Brahim. (2008). Online planning algorithms for pomdps. Journal of Artificial Intelligence Research, 32, 663–704.MathSciNetMATH Ross, Stéphane, Pineau, Joelle, Paquet, Sébastien, & Chaib-Draa, Brahim. (2008). Online planning algorithms for pomdps. Journal of Artificial Intelligence Research, 32, 663–704.MathSciNetMATH
go back to reference Roumeliotis, S. I., & Bekey, G. A. (August 2002). Distributed multi-robot localization. In IEEE transactions on robotics and automation. Roumeliotis, S. I., & Bekey, G. A. (August 2002). Distributed multi-robot localization. In IEEE transactions on robotics and automation.
go back to reference Silver, David, & Veness, Joel (2010). Monte-carlo planning in large pomdps. In Advances in neural information processing systems (NIPS), pp. 2164–2172. Silver, David, & Veness, Joel (2010). Monte-carlo planning in large pomdps. In Advances in neural information processing systems (NIPS), pp. 2164–2172.
go back to reference Stachniss, C., Grisetti, G., & Burgard, W. (2005). Information gain-based exploration using rao-blackwellized particle filters. In Robotics: science and Systems (RSS), pp. 65–72. Stachniss, C., Grisetti, G., & Burgard, W. (2005). Information gain-based exploration using rao-blackwellized particle filters. In Robotics: science and Systems (RSS), pp. 65–72.
go back to reference Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. Cambridge: The MIT press.MATH Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. Cambridge: The MIT press.MATH
go back to reference Valencia, R., Morta, M., Andrade-Cetto, J., & Porta, J. M. (2013). Planning reliable paths with pose SLAM. IEEE Transactions on Robotics, 29(4), 1050–1059.CrossRef Valencia, R., Morta, M., Andrade-Cetto, J., & Porta, J. M. (2013). Planning reliable paths with pose SLAM. IEEE Transactions on Robotics, 29(4), 1050–1059.CrossRef
go back to reference Van Den Berg, J., Patil, S., & Alterovitz, R. (2012). Motion planning under uncertainty using iterative local optimization in belief space. International Journal of Robotics Research, 31(11), 1263–1278.CrossRef Van Den Berg, J., Patil, S., & Alterovitz, R. (2012). Motion planning under uncertainty using iterative local optimization in belief space. International Journal of Robotics Research, 31(11), 1263–1278.CrossRef
Metadata
Title
Cooperative multi-robot belief space planning for autonomous navigation in unknown environments
Author
Vadim Indelman
Publication date
26-01-2017
Publisher
Springer US
Published in
Autonomous Robots / Issue 2/2018
Print ISSN: 0929-5593
Electronic ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-017-9620-6

Other articles of this Issue 2/2018

Autonomous Robots 2/2018 Go to the issue